Skip to main content
Log in

Homological spanning forest framework for 2D image analysis

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

A 2D topology-based digital image processing framework is presented here. This framework consists of the computation of a flexible geometric graph-based structure, starting from a raster representation of a digital image I. This structure is called Homological Spanning Forest (HSF for short), and it is built on a cell complex associated to I. The HSF framework allows an efficient and accurate topological analysis of regions of interest (ROIs) by using a four-level architecture. By topological analysis, we mean not only the computation of Euler characteristic, genus or Betti numbers, but also advanced computational algebraic topological information derived from homological classification of cycles. An initial HSF representation can be modified to obtain a different one, in which ROIs are almost isolated and ready to be topologically analyzed. The HSF framework is susceptible of being parallelized and generalized to higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allili, M., Corriveau, D.: Topological analysis of shapes using Morse theory. Comput. Vis. Image Underst. 105, 188–199 (2007)

    Article  Google Scholar 

  2. Ankeney, L.A., Ritter, G.X.: Cellular topology and its applications in image processing. Int. J. Parallel Program. 12, 433–456 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Ayala, R., Domínguez, E., Francés, A.R., Quintero, A.: Determining the components of the complement of a digital (n-1)-manifold in ℤn. In: Proceedings of the 6th International Workshop on Discrete Geometry for Computer Imagery, pp. 163–176. Springer-Verlag, London, UK (1996)

    Chapter  Google Scholar 

  4. Bertrand, G., Couprie, M.: On parallel thinning algorithms: minimal non-simple sets, p-simple points and critical kernels. J. Math. Imaging Vis. 35, 23–35 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cardoze, D., Miller, G., Phillips, T.: Representing topological structures using cell-chains. In: Geometric Modeling and Processing, pp. 248–266. Pittsburgh, PA (2006)

  6. Chassery, J.M.: Connectivity and consecutivity in digital pictures. Comput. Graph. Image Process. 9(3), 294–300 (1979)

    Article  Google Scholar 

  7. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH ‘05. ACM, New York, NY, USA (2005)

    Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE Computer Society, Washington, DC, USA (2000)

    Chapter  Google Scholar 

  10. Eilenberg, S., Mac Lane, S.: On the groups H(π, n), i, ii, iii. Ann. Math 58, 60, 60, 55–106,48–139, 513–557 (1953,1954)

    Article  MathSciNet  Google Scholar 

  11. El-Kwae, E.A., Kabuka, M.R.: Binary object representation and recognition using the Hilbert morphological skeleton transform. Pattern Recogn. 33(10), 1621–1636 (2000)

    Article  Google Scholar 

  12. Feichtinger, H.G., Onchis, D.M.: Constructive realization of dual systems for generators of multi-window spline-type spaces. J. Comput. Appl. Math. 234, 3467–3479 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forman, R.: A discrete Morse theory for cell complexes. In: Yau, S.T. (ed.) Geometry, Topology and Physics for Raoul Bott. International Press (1995)

  14. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. González-Diaz, R., Jiménez, M., Medrano, B., Molina-Abril, H., Real, P.: Integral operators for computing homology generators at any dimension. In: Ruiz-Shulcloper, J., Kropatsch, W. (eds.) Progress in Pattern Recognition, Image Analysis and Applications. Lecture Notes in Computer Science, vol. 5197, pp. 356–363. Springer Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  16. González-Díaz, R., Jiménez, M.J., Medrano, B., Real, P.: Chain homotopies for object topological representations. Discrete Appl. Math. 157(3), 490–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. González-Díaz, R., Jiménez, M.J., Medrano, B., Real, P.: A tool for integer homology computation: λ-AT-model. Image Vis. Comput. 27(7), 837–845 (2009)

    Article  Google Scholar 

  18. González-Díaz, R., Real, P.: On the cohomology of 3d digital images. Discrete Appl. Math. 147(2–3), 245–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gouaillard, A.: Contexte générique bi-multirésolution basé ondelettes pour l’optimisation d’algorithmes de surfaces actives. Ph.D. thesis, Inst. National des Sciences Appliquées de Lyons (2005)

  20. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra. Ill. J. Math 33, 357–373 (1989)

    MathSciNet  Google Scholar 

  21. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra. ii. Ill. J. Math. 35(3), 357–373 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Kaczynski, T., Mrozek, M., Slusarek, M.: Homology computation by reduction of chain complexes. Comput. Math. Appl. 35(4), 59–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khalimsky, E.: Pattern analysis of n-dimensional digital images. In: Proc. IEEE Int. Conf. Systems, Man and Cybernatics, pp. 1559–1562 (1986)

  24. Klette, R.: Cell complexes through time. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Proc. Vision Geometry IX, vol. 4117, pp. 134–145 (2000)

  25. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Series in Computer Graphics (2004)

  26. Kong, T.Y., Kopperman, R., Meyer, P.R.: A topological approach to digital topology. Am. Math. Mon. 98, 901–917 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kovalevsky, V.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46, 141–161 (1989)

    Article  Google Scholar 

  28. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. Lect. Notes Comput. Sci. 3322, 366–393 (2005)

    Article  MathSciNet  Google Scholar 

  29. Kovalevsky, V.: Axiomatic digital topology. J. Math. Imaging Vis. 26, 41–58 (2006)

    Article  MathSciNet  Google Scholar 

  30. Kovalevsky, V.: Geometry of Locally Finite Spaces. House Dr. Baerbel Kovalevski (2008)

  31. Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution image segmentations in graph pyramids. In: Kandel, A., Bunke, H., Last, M. (eds.) Applied Graph Theory in Computer Vision and Pattern Recognition. Studies in Computational Intelligence, vol. 52, pp. 3–41. Springer (2007)

  32. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Comput.-Aided Des. 23(1), 59–82 (1991)

    Article  MATH  Google Scholar 

  33. Molina-Abril, H., Real, P.: Homological computation using spanning trees. In: CIARP 2009. Lecture Notes in Computer Science, vol. 5856, pp. 272–278 (2009)

  34. Molina-Abril, H., Real, P.: Towards optimality in discrete Morse theory through chain homotopies. In: CTIC 2010, Imagen-a, vol. 1, pp. 33, 40 (2010)

  35. Molina-Abril, H., Real, P.: Homological optimality in discrete Morse theory through chain homotopies. Pattern Recog. Lett. (2012). doi:10.1016/j.patrec.2012.01.014

    Google Scholar 

  36. Parker, J.: Algorithms for Image Processing and Computer Vision. Wiley, New York (1997)

    Google Scholar 

  37. Romero, A., Sergeraert, F.: Discrete vector fields and fundamental algebraic topology. CoRR abs/1005.5685 (2010)

  38. Romero Rodríguez, B., Falces Sánchez, J.: Homología y Arboles Recubridores. Master’s thesis, E.T.S. Ingeniería Informática, Universidad de Sevilla, Spain (2009)

  39. Rosenfeld, A.: Connectivity in digital pictures. J. Assoc. Comput. Mach. 17(1), 146–160 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sergeraert, F.: The computability problem in algebraic topology. Adv. Math. 104, 1–29 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Webster, J.: Cell complexes and digital convexity, pp. 272–282. Springer, New York (2001)

    Google Scholar 

  42. Whitehead, J.: Combinatorial homotopy i. Bull. Amer. Math. Soc. 55, 213–245 (1949)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Molina-Abril.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Abril, H., Real, P. Homological spanning forest framework for 2D image analysis. Ann Math Artif Intell 64, 385–409 (2012). https://doi.org/10.1007/s10472-012-9297-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-012-9297-7

Keywords

Mathematics Subject Classifications (2010)

Navigation