Focused most probable world computations in probabilistic logic programs

  • Gerardo I. Simari
  • Maria Vanina Martinez
  • Amy Sliva
  • V. S. Subrahmanian
Article

Abstract

The “Most Probable World” (MPW) problem in probabilistic logic programming (PLPs) is that of finding a possible world with the highest probability. Past work has shown that this problem is computationally intractable and involves solving exponentially many linear programs, each of which is of exponential size. In this paper, we study what happens when the user focuses his interest on a set of atoms in such a PLP. We show that we can significantly reduce the number of worlds to be considered by defining a “reduced” linear program whose solution is in one-one correspondence with the exact solution to the MPW problem. However, the problem is still intractable. We develop a Monte Carlo sampling approach that enables us to build a quick approximation of the reduced linear program that allows us to estimate (inexactly) the solution to the MPW problem. We show experimentally that our approach works well in practice, scaling well to problems where the exact solution is intractable to compute.

Keywords

Probabilistic logic programming Imprecise probabilities Most probable worlds 

Mathematics Subject Classifications (2010)

68T37 68T30 68T27 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applegate, D., Cook, W., Dash, S., Mevenkamp, M.: QSopt: a linear programming library for JAVA. http://www2.isye.gatech.edu/~wcook/qsopt (2009)
  2. 2.
    Black, M., Jepson, A.: A probabilistic framework for matching temporal trajectories: condensation-based recognition of gestures and expressions. In: Proceedings of ECCV ’98, pp. 909–924 (1998)Google Scholar
  3. 3.
    Damasio, C.V., Pereira, L.M., Swift, T.: Coherent well-founded annotated logic programs. In: Logic Programming and Non-monotonic Reasoning, pp. 262–276 (1999)Google Scholar
  4. 4.
    Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Journal of Logic Programming, pp. 391–405 (1997)Google Scholar
  5. 5.
    Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: a consistency-based belief change system. In: Proceedings of ECSQARU ’07, pp. 78–90. Springer, Berlin, Heidelberg (2007)Google Scholar
  6. 6.
    Eiter, T., Subrahmanian, V.S., Pick, G.: Heterogeneous active agents, I: semantics. Artif. Intell. 108(1/2), 178–255 (1999)MathSciNetGoogle Scholar
  7. 7.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inform. Comput. 87(1/2), 78–128 (1990)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hailperin, T.: Probability logic. Notre Dame J. Formal Logic 25 (3), 198–212 (1984)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)MATHCrossRefGoogle Scholar
  10. 10.
    Jaumard, B., Hansen, P., de Aragão, M.P.: Column generation methods for probabilistic logic. In: Proceedings of the First Integer Programming and Combinatorial Optimization Conference, pp. 313–331. University of Waterloo Press, Waterloo, Ontario, Canada (1990)Google Scholar
  11. 11.
    Khuller, S., Martinez, M.V., Nau, D., Simari, G., Sliva, A., Subrahmanian, V.S.: Action probabilistic logic programs. Ann. Math. Artif. Intell. 51(2–4), 295–331 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Khuller, S., Martinez, M.V., Nau, D., Simari, G., Sliva, A., Subrahmanian, V.S.: Finding most probable worlds of probabilistic logic programs. In: Proceedings of SUM 2007, vol. 4772, pp. 45–59. LNCS. Springer (2007)Google Scholar
  13. 13.
    Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: a flexible probabilistic database system. ACM TODS 22, 419–469 (1997)CrossRefGoogle Scholar
  14. 14.
    Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty. IEEE TKDE 13(4), 554–570 (2001)Google Scholar
  15. 15.
    Leone, N., Scarcello, F., Subrahmanian, V.S.: Optimal models of disjunctive logic programs: semantics, complexity, and computation. IEEE TKDE 16(4), 487–503 (2004)Google Scholar
  16. 16.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer (1987)Google Scholar
  17. 17.
    Lukasiewicz, T.: Probabilistic logic programming. In: Proceedings of ECAI ’98, pp. 388–392 (1998)Google Scholar
  18. 18.
    Lukasiewicz, T., Kern-Isberner, G.: Probabilistic logic programming under maximum entropy. LNCS (Proceedings of ECSQARU ’99), vol. 1638 (1999)Google Scholar
  19. 19.
    Mannes, A., Michael, M., Pate, A., Sliva, A., Subrahmanian, V.S., Wilkenfeld, J.: Stochastic opponent modelling agents: A case study with Hezbollah. In: Liu, H., Salerno, J. (eds.) Proceedings of the First International Workshop on Social Computing, Behavioral Modeling and Prediction (2008)Google Scholar
  20. 20.
    Mannes, A., Michel, M., Pate, A., Sliva, A., Subrahmanian, V.S., Wilkenfeld, J.: Stochastic opponent modeling agents: a case study with Hamas. In: Proceedings of ICCCD 2008 (2008)Google Scholar
  21. 21.
    Mannes, A., Subrahmanian, V.: Calculated terror. Foreign Policy (online edition). http://www.foreignpolicy.com/articles/2009/12/15/calculated_terror (2009)
  22. 22.
    Martinez, V., Simari, G., Sliva, A., Subrahmanian, V.S.: The soma terror organization portal (stop): social network and analytic tools for the real-time analysis of terror groups. In: Liu, H., Salerno, J. (eds.) Proceedings of the First International Workshop on Social Computing, Behavioral Modeling and Prediction (2008)Google Scholar
  23. 23.
    Montenegro, R., Tetali, P.: Mathematical aspects of mixing times in markov chains. FTTCS 1(3), 237–354 (2006)MathSciNetGoogle Scholar
  24. 24.
    Ng, R.T., Subrahmanian, V.S.: A semantical framework for supporting subjective and conditional probabilities in deductive databases. In: Furukawa, K. (ed.) Proceedings of ICLP ’91, pp. 565–580. The MIT Press (1991)Google Scholar
  25. 25.
    Ng, R.T., Subrahmanian, V.S.: Probabilistic logic programming. Inform. Comput. 101(2), 150–201 (1992)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Ngo, L., Haddawy, P.: Probabilistic logic programming and bayesian networks. In: Proceedings of the Asian Computing Science Conference ’95, pp. 286–300 (1995)Google Scholar
  27. 27.
    Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Oh, S., Sastry, S.: Tracking on a graph. In: IPSN ’05: Proceedings of the 4th international symposium on Information processing in sensor networks, p. 26. IEEE Press, Piscataway, NJ, USA (2005)Google Scholar
  29. 29.
    Papadimitriou, C.H.: On selecting a satisfying truth assignment (extended abstract). In: SFCS ’91: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, pp. 163–169. IEEE Computer Society, Washington, DC, USA (1991)Google Scholar
  30. 30.
    SAT4J: A satisfiability library for JAVA. http://www.sat4j.org (2009)
  31. 31.
    Schöning, U.: A probabilistic algorithm for k-sat and constraint satisfaction problems. In: FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, p. 410. IEEE Computer Society, Washington, DC, USA (1999)Google Scholar
  32. 32.
    Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proceedings of AAAI ’94, pp. 337–343. MIT press (1994)Google Scholar
  33. 33.
    Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: Proceedings of AAAI ’92, pp. 440–446 (1992)Google Scholar
  34. 34.
    Shapiro, E.Y.: Logic programs with uncertainties: a tool for implementing rule-based systems. In: Proceedings of IJCAI ’83, pp. 529–532 (1983)Google Scholar
  35. 35.
    Simari, G., Sliva, A., Nau, D., Subrahmanian, V.S.: A stochastic language for modelling opponent agents. In: Proceedings of AAMAS ’06, pp. 244–246. ACM, New York, NY, USA (2006)CrossRefGoogle Scholar
  36. 36.
    Sliva, A., Martinez, V., Simari., G.I., Subrahmanian, V.S.: Soma models of the behaviors of stakeholders in the afghan drug economy: A preliminary report. In: Proceedings of the First International Conference on Computational Cultural Dynamics (ICCCD 2007). ACM press (2007)Google Scholar
  37. 37.
    Stroe, B., Subrahmanian, V.S., Dasgupta, S.: Optimal status sets of heterogeneous agent programs. In: Proceedings of AAMAS ’05, pp. 709–715. ACM, New York, NY, USA (2005)CrossRefGoogle Scholar
  38. 38.
    van Emden, M.: Quantitative deduction and its fixpoint theory. J. Log. Program. 4, 37–53 (1986)CrossRefGoogle Scholar
  39. 39.
    Wei, W., Selman, B.: Accelerating random walks. In: Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming, pp. 216–232. Springer, London, UK (2002)Google Scholar
  40. 40.
    Yue, A., Liu, W., Hunter, A.: Measuring the ignorance and degree of satisfaction for answering queries in imprecise probabilistic logic programs. In: Proceedings of SUM ’08, pp. 386–400. Springer, Berlin, Heidelberg (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gerardo I. Simari
    • 1
    • 2
  • Maria Vanina Martinez
    • 1
    • 2
  • Amy Sliva
    • 1
    • 2
  • V. S. Subrahmanian
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of Maryland College ParkCollege ParkUSA
  2. 2.University of Maryland Institute for Advanced Computer Studies (UMIACS)University of Maryland College ParkCollege ParkUSA

Personalised recommendations