Skip to main content
Log in

Parallel algorithm for computing fixpoints of Galois connections

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper presents a parallel algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. The algorithm results as a parallelization of CbO (Kuznetsov 1999) in which we process disjoint sets of fixpoints simultaneously. One of the distinctive features of the algorithm compared to other parallel algorithms is that it avoids synchronization which has positive impacts on its speed and implementation. We describe the parallel algorithm, prove its correctness, and analyze its asymptotic complexity. Furthermore, we focus on implementation issues, scalability of the algorithm, and provide an evaluation of its efficiency on various data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D: UCI Machine learning repository. School of Information and Computer Sciences, University of California, Irvine (2007)

    Google Scholar 

  2. Baklouti, F., Levy G.: A distributed version of the Ganter algorithm for general Galois Lattices. In: Belohlavek, R., Snasel, V. (eds.) Proc. CLA, pp. 207–221 (2005)

  3. Belohlavek, R., Vychodil V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76, 3–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berry, A., Bordat, J.-P., Sigayret, A.: A local approach to concept generation. Ann. Math. Artif. Intell. 49, 117–136 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  6. Fu, H., Mephu Nguifo, E.: A Parallel Algorithm to Generate Formal Concepts for Large Data. ICFCA, LNCS 2961, 394–401 (2004)

    Google Scholar 

  7. Ganter, B.: Two basic algorithms in concept analysis. (Technical Report FB4-Preprint No. 831). TH Darmstadt (1984)

  8. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  9. Grätzer G. et al.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  10. Hettich, S., Bay, S.D.: The UCI KDD Archive University of California, Irvine, School of Information and Computer Sciences (1999)

  11. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kengue J. F. D., Valtchev P., Djamégni C. T.: A parallel algorithm for lattice construction. ICFCA, LNCS 3403, 249–264 (2005)

    Google Scholar 

  13. Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Autom. Doc. Math. Linguist. 24(1), 37–45 (1989)

    Google Scholar 

  14. Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice (Быстрый алгоритм построения всех пересечений обIектов из конечной полурешетки, in Russian). Automatic Documentation and Mathematical Linguistics, 27(5), 11–21 (1993)

    Google Scholar 

  15. Kuznetsov, S.: Learning of simple conceptual graphs from positive and negative examples. PKDD, pp. 384–391 (1999)

  16. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  17. Lindig, C.: Fast concept analysis. Working with Conceptual Structures—Contributions to ICCS 2000, pp. 152–161. Shaker, Aachen (2000)

  18. Norris, E.M.: An Algorithm for computing the maximal rectangles in a binary relation. Rev. Roum. Math. Pures. Appl. 23(2), 243–250 (1978)

    MATH  MathSciNet  Google Scholar 

  19. Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. Ordered Sets, pp. 445–470, Reidel, Dordrecht (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilem Vychodil.

Additional information

Supported by research plan MSM 6198959214. Partly supported by grant P103/10/1056 of the Czech Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajca, P., Outrata, J. & Vychodil, V. Parallel algorithm for computing fixpoints of Galois connections. Ann Math Artif Intell 59, 257–272 (2010). https://doi.org/10.1007/s10472-010-9199-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-010-9199-5

Keywords

Mathematics Subject Classifications (2010)

Navigation