Advertisement

Generalization of association rules through disjunction

  • Tarek HamrouniEmail author
  • Sadok Ben Yahia
  • Engelbert Mephu Nguifo
Article

Abstract

Several efforts were devoted to mining association rules having conjunction of items in premise and conclusion parts. Such rules convey information about the co-occurrence relations between items. However, other links amongst items—like complementary occurrence of items, absence of items, etc.—may occur and offer interesting knowledge to end-users. In this respect, looking for such relationship is a real challenge since not based on the conjunctive patterns. Indeed, catching such links requires obtaining semantically richer association rules, the generalized ones. These latter rules generalize classic ones to also offer disjunction and negation connectors between items, in addition to the conjunctive one. For this purpose, we propose in this paper a complete process for mining generalized association rules starting from an extraction context. Our experimental study stressing on the mining performances as well as the quantitative aspect proves the soundness of our proposal.

Keywords

Data mining Disjunctive closed pattern Disjunctive support Equivalence class Frequent essential pattern Generalized association rules Partially ordered structure Lattices 

Mathematics Subject Classifications (2010)

68 68Txx 68T99 68Pxx 68P30 62-07 97R50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinbach, M., Kumar, V.: Generalizing the notion of confidence. Knowl. Inf. Syst. 12(3), 279–299 (2007)CrossRefGoogle Scholar
  2. 2.
    Tzanis, G., Berberidis, C.: Mining for mutually exclusive items in transaction databases. Int. J. Data Warehousing Mining 3(3), 45–59 (2007)Google Scholar
  3. 3.
    Hamrouni, T., Ben Yahia, S., Mephu Nguifo, E.: Sweeping the disjunctive search space towards mining new exact concise representations of frequent itemsets. Data Knowl. Eng. 68(10), 1091–1111 (2009)CrossRefGoogle Scholar
  4. 4.
    Hamrouni, T.: Mining concise representations of frequent patterns through conjunctive and disjunctive search spaces. Ph.D. thesis, University of Tunis El Manar (Tunisia) and University of Artois (France). Available at: http://tel.archives-ouvertes.fr/tel-00465733 (2009)
  5. 5.
    Nanavati, A.A., Chitrapura, K.P., Joshi, S., Krishnapuram, R.: Mining generalised disjunctive association rules. In: Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM 2001), pp. 482–489. Atlanta, Georgia, USA (2001)Google Scholar
  6. 6.
    Hattori, L., dos Santos, G., Cardoso, F., Sampaio, M.: Mining software repositories for software change impact analysis: a case study. In: Proceedings of the 23rd Brasilian Symposium on Database (SBBD 2008). Campinas, Brazil (2008)Google Scholar
  7. 7.
    She, S.: Feature model mining. Master thesis, University of Waterloo, Waterloo, Ontario, Canada (2008)Google Scholar
  8. 8.
    Ralbovský, M., Kuchar, T.: Using disjunctions in association mining. In: Proceedings of the 7th Industrial Conference on Data Mining (ICDM 2007). LNCS, vol. 4597, pp. 339–351. Springer, Leipzig, Germany (2007)Google Scholar
  9. 9.
    Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proceedings of the 21th International Conference on Very Large Data Bases (VLDB 1995), pp. 407–419. Zurich, Switzerland (1995)Google Scholar
  10. 10.
    Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses determination. Computing 1, 293–308 (1966)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation: Mathematical Foundations for a General Theory. Springer, New York (1978)zbMATHGoogle Scholar
  12. 12.
    Toivonen, H.: Discovering of frequent patterns in large data collections. Ph.D. thesis, University of Helsinki, Helsinki, Finland (1996)Google Scholar
  13. 13.
    Weiss, G.M.: Mining with rarity: a unifying framework. ACM-SIGKDD Explor. 6(1), 7–19 (2004)CrossRefGoogle Scholar
  14. 14.
    Hébert, C., Crémilleux, B.: A unified view of objective interestingness measures. In: Proceedings of the 5th International Conference Machine Learning and Data Mining in Pattern Recognition (MLDM 2007). LNCS, vol. 4571, pp. 533–547. Springer, Leipzig, Germany (2007)CrossRefGoogle Scholar
  15. 15.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–31 (2006)CrossRefGoogle Scholar
  16. 16.
    Casali, A., Cicchetti, R., Lakhal, L.: Essential patterns: a perfect cover of frequent patterns. In: Proceedings of the 7th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2005). LNCS, vol. 3589, pp. 428–437. Springer, Copenhagen, Denmark (2005)Google Scholar
  17. 17.
    Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association rules. ACM Trans. Inf. Sys. 22(3), 381–405 (2004)CrossRefGoogle Scholar
  18. 18.
    Ceglar, A., Roddick, J.F.: Association mining. ACM Comput. Surv. 38(2), 1–42 (2006)CrossRefGoogle Scholar
  19. 19.
    Kryszkiewicz, M.: Concise representations of frequent patterns and association rules. Habilitation dissertation, Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland (2002)Google Scholar
  20. 20.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, New York (1999)zbMATHGoogle Scholar
  21. 21.
    Galambos, J., Simonelli, I.: Bonferroni-type Inequalities with Applications. Springer, New York (2000)Google Scholar
  22. 22.
    Kryszkiewicz, M.: Closures of downward closed representations of frequent patterns. In: Proceedings of the 4th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2009). LNCS, vol. 5572, pp. 104–112. Springer, Salamanca, Spain (2009)Google Scholar
  23. 23.
    Rauch, J.: Logic of association rules. Appl. Intell. 22(1), 9–28 (2005)zbMATHCrossRefGoogle Scholar
  24. 24.
    Hamrouni, T., Ben Yahia, S., Mephu Nguifo, E.: Optimized mining of a concise representation for frequent patterns based on disjunctions rather than conjunctions. In: Proceedings of the 23rd International Florida Artificial Intelligence Research Society Conference (FLAIRS 2010), pp. 422–427. AAAI, Daytona Beach, Florida, USA (2010)Google Scholar
  25. 25.
    Baixeries, J., Szathmary, L., Valtchev, P., Godin, R.: Yet a faster algorithm for building the Hasse Diagram of a concept lattice. In: Proceedings of the 7th International Conference on Formal Concept Analysis (ICFCA 2009). LNCS, vol. 5548, pp. 162–177. Springer, Darmstadt, Germany (2009)Google Scholar
  26. 26.
    Valtchev, P., Missaoui, R., Lebrun, P.: A fast algorithm for building the Hasse Diagram of a Galois Lattice. In: Proceedings of the Conference on Combinatorics, Computer Science and Applications (LaCIM 2000), pp. 293–306. Montréal, Canada (2000)Google Scholar
  27. 27.
    Cheng, J., Ke, Y., Ng, W.: Effective elimination of redundant association rules. Data Min. Knowl. Discov. 16(2), 221–249 (2008)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Savasere, A., Omiecinski, E., Navathe, S.: Mining for strong negative associations in a large database of customer transactions. In: Proceedings of the 14th International Conference on Data Engineering (ICDE 1998), pp. 494–502. IEEE Computer Society, Orlando, Florida, USA (1998)CrossRefGoogle Scholar
  29. 29.
    Antonie, M., Zaïane, O.R.: Mining positive and negative association rules: an approach for confined rules. In: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2004). LNCS, vol. 3202, pp. 27–38. Springer, Pisa, Italy (2004)Google Scholar
  30. 30.
    Morzy, M.: Efficient mining of dissociation rules. In: Proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2006). LNCS, vol. 4081, pp. 228–237. Springer, Krakow, Poland (2006)Google Scholar
  31. 31.
    Hájek P. (guest ed.): Int. J. Man-Mach. Stud. 10 (1978, special issue on GUHA)Google Scholar
  32. 32.
    Hájek P. (guest ed.): Int. J. Man-Mach. Stud. 15 (1981, second special issue on GUHA)Google Scholar
  33. 33.
    Hájek, P., Holena, M., Rauch, J.: The GUHA method and its meaning for data mining. J. Comput. Syst. Sci. 76(1), 34–48 (2010)zbMATHCrossRefGoogle Scholar
  34. 34.
    Rauch, J., Simunek, M.: Dealing with background knowledge in the SEWEBAR project. In: Berendt, B. et al. (eds.) Knowledge Discovery Enhanced with Semantic and Social Information, SCI 220, pp 89–106. Springer, Berlin (2009)CrossRefGoogle Scholar
  35. 35.
    Rauch, J.: Classes of association rules: an overview. In: Lin, T., et al. (eds.) Data Mining: Foundations and Practice, SCI 118, pp. 315–337. Springer, Berlin (2008)CrossRefGoogle Scholar
  36. 36.
    Kim, H.D.: Complementary occurrence and disjunctive rules for market basket analysis in data mining. In: Proceedings of the 2nd IASTED International Conference Information and Knowledge Sharing (IKS 2003), pp. 155–157. Scottsdale, AZ, USA (2003)Google Scholar
  37. 37.
    Grün, G.A.: New forms of association rules. Technical Report TR 1998-15, School of Computing Science, Simon Fraser University, Burnaby, BC, Canada (1998)Google Scholar
  38. 38.
    Shima, Y., Hirata, K., Harao, M., Yokoyama, S., Matsuoka, K., Izumi, T.: Extracting disjunctive closed rules from MRSA data. In: Proceedings of the 1st International Conference on Complex Medical Engineering (CME 2005), pp. 321–325. Takamatsu, Japan (2005)Google Scholar
  39. 39.
    Shima, Y., Mitsuishi, S., Hirata, K., Harao, M.: Extracting minimal and closed monotone DNF formulas. In: Proceedings of the 7th International Conference Discovery Science (DS 2004). LNCS, vol. 3245, pp. 298–305. Springer, Padova, Italy (2004)Google Scholar
  40. 40.
    Elble, J., Heeren, C., Pitt, L.: Optimized disjunctive association rules via sampling. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), pp. 43–50. Melbourne, Florida, USA (2003)Google Scholar
  41. 41.
    Li, J., Jones, J.: Using multiple and negative target rules to make classifiers more understandable. Knowl.-Based Syst. 19(6), 438–444 (2006)CrossRefGoogle Scholar
  42. 42.
    Bykowski, A., Rigotti, C.: DBC: a condensed representation of frequent patterns for efficient mining. Inf. Syst. 28(8), 949–977 (2003)CrossRefGoogle Scholar
  43. 43.
    Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE Trans. Knowl. Data Eng. 15(1), 57–69 (2003)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tarek Hamrouni
    • 1
    • 2
    Email author
  • Sadok Ben Yahia
    • 1
  • Engelbert Mephu Nguifo
    • 3
  1. 1.Computer Science DepartmentFaculty of Sciences of TunisTunisTunisia
  2. 2.CRIL-CNRSLille Nord UniversityArtoisFrance
  3. 3.LIMOS-CNRSBlaise Pascal UniversityAubière cedexFrance

Personalised recommendations