On the connection between many-valued contexts and general geometric structures

  • Tim B. KaiserEmail author


We study the connection between certain many-valued contexts and general geometric structures. The known one-to-one correspondence between attribute-complete many-valued contexts and complete affine ordered sets is used to extend the investigation to π-lattices, class geometries, and lattices with classification systems. π-lattices are identified as a subclass of complete affine ordered sets, which exhibit an intimate relation to concept lattices closely tied to the corresponding context. Class geometries can be related to complete affine ordered sets using residuated mappings and the notion of a weak parallelism. Lattices with specific sets of classification systems allow for some sort of “reverse conceptual scaling”.


Many-valued contexts Affine ordered sets (Concept) lattices General geometric structures Conceptual scaling 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  2. 2.
    Ganter, B., Wille, R.: Conceptual scaling. In: Roberts, F. (ed.) Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–167. Springer, Berlin, Heidelberg, New York (1989)Google Scholar
  3. 3.
    Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Springer, Berlin, Heidelberg, New York (1999)zbMATHGoogle Scholar
  4. 4.
    Hereth-Correia, J., Kaiser, T.B.: A mathematical model for TOSCANA-systems: conceptual data systems. In: Eklund, P. (ed.) Concept Lattices. LNAI, vol. 2961, pp. 39–46. Springer, Berlin, Heidelberg, New York (2004)CrossRefGoogle Scholar
  5. 5.
    Kaiser, T.B.: Representation of data contexts and their concept lattices in general geometric spaces. In: Dau, F. (ed.) Conceptual Structures: Common Semantics for Sharing Knowledge. LNAI, vol. 3596, pp. 195–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Kaiser, T.B.: Closure systems of equivalence relations and their labeled class geometries. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) Concept Lattices and Applications. LNAI, vol. 4932, pp. 96–106. Springer, Berlin, Heidelberg, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Kaiser, T.B.: Connecting many-valued contexts to general geometric structures. In: Conference Proceedings Concept Lattices and Applications (CLA08). Olomouc (2008)Google Scholar
  8. 8.
    Kaiser, T.B.: From Data Tables to General Geometric Structures. Dissertation, Shaker, Aachen (2008)Google Scholar
  9. 9.
    Kaiser, T.B., Schmidt, S.E.: Geometry of data tables. In: Eklund, P. (ed.) Concept Lattices. LNAI, vol. 2961, pp. 222–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Körei, A., Radeleczki S.: Box elements in a concept lattice. In: Ganter, B., Kwuida, L. (eds.) Contributions to ICFCA 2006, pp. 41–55. Verlag Allgemeine Wissenschaft (2006)Google Scholar
  11. 11.
    Radeleczki, S.: Classification systems and the decompositions of a lattice into direct products. Math. Notes (Miskolc) 1(1), 145–156 (2000)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Schmidt, S.E.: Grundlegungen zu einer allgemeinen affinen Geometrie. Birkhäuser, Basel, Boston, Berlin (1995)zbMATHGoogle Scholar
  13. 13.
    Vogt, F., Wachter, C., Wille, R.: Data analysis based on a conceptual file. In: Bock, H.H., Ihm, P. (eds.) Classification, Data Analysis and Knowledge Organization, pp. 131–142. Springer, Berlin, Heidelberg (1991)Google Scholar
  14. 14.
    Wille, R.: Kongruenzklassengeometrien. Springer, Berlin, Heidelberg, New York (1970)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für AlgebraTechnische Universität DresdenDresdenGermany

Personalised recommendations