Skip to main content
Log in

The Galois lattice as a hierarchical structure for topological relations

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

This paper presents the construction and the comparison of Galois lattices of topological relations for qualitative spatial representation and reasoning. The lattices rely on a correspondence between computational operations working on quantitative data, on the one hand, and topological relations working on qualitative knowledge units, on the other hand. After introducing the context of the present research work, i.e. the RCC-8 model of topological relations, we present computational operations for checking topological relations on spatial regions. From these operations are derived two sets of computational conditions that can be associated to topological relations through a Galois connection. The associated Galois lattices are presented and compared. Elements on the practical use of the lattices for representing spatial knowledge and for reasoning are also introduced and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Ber, F., Mangelinck, L.: A formal representation of landscape spatial patterns to analyze satellite images. AI Appl. (Natural Resources, Agriculture, and Environmental Science) 12 (1–3), 51–59 (1998)

    Google Scholar 

  2. Barbut, M., Monjardet, B.: Ordre et classification – Algèbre et combinatoire, Hachette, Paris (1970)

    MATH  Google Scholar 

  3. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge, UK (1990)

    MATH  Google Scholar 

  4. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  5. Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. Int. J. Geog. Inf. Syst. 5(2), 161–174 (1991)

    Article  Google Scholar 

  6. Egenhofer, M.J., Sharma, J.: Topological relations between regions in \(\mathbb{R}^{2} \) and \(\mathbb{Z}^{2} \). In: Abel, D.J., Ooi, B.C. (eds.) Advances in Spatial Databases, Third International Symposium, SSD’93, Singapore, LNCS 692, pp. 316–336. Springer, Berlin Heidelberg New York (1993)

    Google Scholar 

  7. Bennett, B., Isli, A., Cohn, A.G.: A system handling RCC-8 queries on 2D regions representable in the closure algebra of half-planes. In: Proceedings of the 11th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA-AIE), LNCS 1415, pp. 281–290. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  8. Randell, D.A., Cohn, A.G.: Exploiting lattices in a theory of space and time. Comput. Math. Appl. 23(6–9), 459–476 (1992)

    Article  MATH  Google Scholar 

  9. Bennett, B.: Spatial reasoning with propositional logics. In: Doyle, J., Sandwall, E., Torasso, P. (eds.) Proceeding of the Fourth International Conference on Principles of Knowledge Representation and Reasoning (KR’94), pp. 246–257. Morgan Kaufmann, San Mateo, CA (1994)

    Google Scholar 

  10. Möller, R., Wessel, M.: Terminological Default Reasoning about spatial information: A First Step. In: Freksa, C., Mark, D.M. (eds.) Spatial Information Theory, Cognitive and Computational Foundations of Geographic Information Science, LNCS 1661, Springer, 1999, International Conference COSIT’99, pp. 189–204. Stade, Germany (1999)

  11. Kainz, W., Egenhofer, M.J., Greasley, I.: Modelling spatial relations and operations with partially ordered sets. Int. J. Geogr. Inf. Syst. 7(3), 215–229 (1993)

    Article  Google Scholar 

  12. Le Ber, F., Napoli, A.: The design of an object-based system for representing and classifying spatial structures and relations. J. Univers. Comput. Sci. 8(8), 751–773 (2002)

    Google Scholar 

  13. Vieu, L.: Spatial representation and reasoning in artificial intelligence. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 5–42. Kluwer, Boston (1997)

    Chapter  Google Scholar 

  14. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: 3rd International Conference on Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Mateo, CA (1992)

    Google Scholar 

  15. Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.M.: Representing and reasoning with qualitative spatial relations about regions. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 97–134. Kluwer, Boston (1997)

    Chapter  Google Scholar 

  16. Clarke, B.L.: A calculus of individuals based on ‘connection’. Notre Dame J. Form. Log. 22(3), 204–218 (1981)

    Article  MATH  Google Scholar 

  17. Randell, D.A., Cohn, A.G., Cui, Z.: Computing transitivity tables: a challenge for automated theorem provers. In: Proceedings of the 11th international conference on automated deduction, CADE’92, LNCS 607, pp. 786–790. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  18. Cohn, A.G., Randell, D.A., Cui, Z., Bennet, B.: Qualitative spatial reasoning and representation. In: Piera Carrete, N., Singh, M.G. (eds.) IMACS Int. Workshop on Qualitative Reasoning and Decision Technologies, pp. 513–522. Barcelona, Spain (1993)

  19. Randell, D., Witkowski, M.: Building large composition tables via axiomatic theories. In: Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR2002), Toulouse, France, pp. 26–35. Morgan Kaufmann, San Mateo, CA (2002)

    Google Scholar 

  20. Le Ber, F., Napoli, A.: Design and comparison of lattices of topological relations for spatial representation and reasoning. J. Exp. Theor. Artif. Intell. 15(3), 331–371 (2003)

    Article  MATH  Google Scholar 

  21. Egenhofer, M.J.: A formal definition of binary topological relationships. In: Litwin, W., Schek, H. (eds.) Foundations of Data Organization and Algorithms, FODO 1989, Paris, France, LNCS 367, pp. 457–472. Springer, Berlin Heidelberg New York (1989)

    Google Scholar 

  22. Mangelinck, L.: Représentation et classification de structures spatiales. Application à la reconnaissance de paysages agricoles, Thèse de doctorat, Université Henri Poincaré Nancy 1 (1998)

  23. Le Ber, F., Mangelinck, L., Napoli, A.: Design and comparison of lattices of topological relations for spatial representation and reasoning. Rapport de recherche INRIA RR-4321, 57 (2001)

  24. Duquenne, V.: Latticial structures in data analysis. Theor. Comp. Sci. 217, 407–436 (1999)

    Article  MATH  Google Scholar 

  25. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 95, 5–18 (1986)

    Google Scholar 

  26. Duquenne, V.: Contextual implications between attributes and some representational properties for finite lattices. In: Beiträge zur Begriffsanalyse, pp. 213–239. B.I. Wissenschafts-verlag, Mannheim (1987)

    Google Scholar 

  27. Wille, R.: Concept lattices and conceptual knowledge systems. Comput. Math. Appl. 23(6–9), 493–515 (1992)

    Article  MATH  Google Scholar 

  28. Ducournau, R.: Y3 : YAFOOL, the object oriented language, SEMA Group (1991)

  29. Ligozat, G.: Simple models for simple calculi. In: Freksa, C., Mark, D.M. (eds.) Spatial Information Theory, Cognitive and Computational Foundations of Geographic Information Science, LNCS 1661, Springer, 1999, International Conference COSIT’99, pp. 173–188. Stade, Germany (1999)

  30. Godin, R., Missaoui, R.: An incremental concept formation approach for learning from databases. Theor. Comp. Sci. 133(2), 387–419 (1994)

    Article  MATH  Google Scholar 

  31. Simon, A., Napoli, A.: Building viewpoints in an object-based representation system for knowledge discovery in databases. In: Rubin, S. (ed.) Proceedings of the first international conference on information reuse and integration (IRI’99), pp. 104–108. Atlanta, Geogia, ISCA (1999)

    Google Scholar 

  32. Valtchev, P., Missaoui, R., Godin, R.: Formal concept analysis for knowledge discovery and data mining: The new challenges. In: Eklund, P.W. (ed.) Concept Lattices, Second International Conference on Formal Concept Analysis, ICFCA 2004, Sydney, Australia, Springer. Lect. Notes Comput. Sci. 2961, 352–371 (2004)

  33. Price, K., Russ, T., MacGregor, R.: Knowledge representation for computer vision: the VEIL Project. In: ARPA Image Understanding Workshop (1994)

  34. Russ, T., MacGregor, R., Salemi, B., Price, K., Nevatia, R.: VEIL: combining semantic knowledge with image understanding. In: ARPA Image Understanding Workshop (1996)

  35. MacGregor, R.M.: Inside the LOOM Description Classifier. ACM Sigart Bulletin 2(3), 88–92 (1991)

    Article  Google Scholar 

  36. MacGregor, R., Brill, D.: Recognition algorithms for the Loom classifier. In: Proceedings of AAAI’92, pp. 774–779. San Jose, USA (1992)

  37. Haarslev, V., Lutz, C., Möller, R.: A description logic with concrete domains and a role-forming predicate operator. J. Log. Comput. 9(3), 351–384 (1999)

    Article  MATH  Google Scholar 

  38. Le Ber, F., Napoli, A., Metzger, J.-L., Lardon, S.: Modeling and comparing farm maps using graphs and case-based reasoning. J. Univers. Comput. Sci. 9(9), 1073–1095 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Le Ber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napoli, A., Le Ber, F. The Galois lattice as a hierarchical structure for topological relations. Ann Math Artif Intell 49, 171–190 (2007). https://doi.org/10.1007/s10472-007-9054-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-007-9054-5

Keywords

Mathematics Subject Classification (2000)

Navigation