Skip to main content
Log in

This paper is concerned with the reliable inference of optimal tree-approximations to the dependency structure of an unknown distribution generating data. The traditional approach to the problem measures the dependency strength between random variables by the index called mutual information. In this paper reliability is achieved by Walley's imprecise Dirichlet model, which generalizes Bayesian learning with Dirichlet priors. Adopting the imprecise Dirichlet model results in posterior interval expectation for mutual information, and in a set of plausible trees consistent with the data. Reliable inference about the actual tree is achieved by focusing on the substructure common to all the plausible trees. We develop an exact algorithm that infers the substructure in time O(m 4), m being the number of random variables. The new algorithm is applied to a set of data sampled from a known distribution. The method is shown to reliably infer edges of the actual tree even when the data are very scarce, unlike the traditional approach. Finally, we provide lower and upper credibility limits for mutual information under the imprecise Dirichlet model. These enable the previous developments to be extended to a full inferential method for trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun, eds., Handbook of Mathematical Functions (Dover, 1974).

  2. I.D. Aron and P. Van Hentenryck, On the complexity of the robust spanning tree problem with internal data, Operations Research Letters 32 (2004) 36–40.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.-M. Bernard, 2001, Non-parametric inference about an unknown mean using the imprecise Dirichlet model, in: ISIPTA'01, eds. G. de Cooman, T. Fine and T. Seidenfeld (The Netherlands, 2001) pp. 40–50.

  4. J.-M. Bernard, An introduction to the imprecise Dirichlet model for multinomial data, International Journal of Approximate 39(2–3) (2005) 123–150.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.K. Chow and C.N. Liu, Approximating discrete probability distributions with dependence tress, IEEE Transactions on Information Theory, IT-14(3) (1968) 462–468.

    Article  MathSciNet  Google Scholar 

  6. N. Friedman, D. Geiger and M. Goldszmidt, Bayesian networks classifiers, Machine Learning 29(2/3) (1997) 131–163.

    Article  MATH  Google Scholar 

  7. A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian Data Analysis (Chapman, 1995).

  8. J.B.S. Haldane, The precision of observed values of small frequencies, Biometrika 35 (1948) 297–300.

    MathSciNet  Google Scholar 

  9. M. Hutter, Distribution of mutual information, in: Proceedings of NIPS*2001, eds. T.G. Dietterich, S. Vecker and Z. Ghahramani (Cambridge, MA, 2001).

  10. M. Hutter, Robust estimators under the imprecise dirichlet model, in: Proc. 3rd International Symposium on Imprecise Probalities and Their Application (ISIPTA-2003), Proceedings in Informatics Vol. 18 (Canada, 2003) pp. 274–289.

  11. M. Hutter and M. Zaffalon, Distribution of mutual information from complete and incomplete data, Computational Statics & Data Analysis 48(3) (2005) 633–657.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Jeffreys, An invariant form for the prior probability in estimation problems, in: Proceedings Royal Society London A, 186 (1946) pp. 453–461.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.G. Kendall and A. Stuart, The Advanced Theory of Statistics, 2nd edition. (Griffin, London, 1967).

    Google Scholar 

  14. G.D. Kleiter, The posterior probability of Bayers nets with strong dependences, Soft Computing 3 (1999) 162–173.

    Google Scholar 

  15. J.B. Kruskal Jr., On the shortest spanning subtree of a graph and the traveling salesman problem, in: Proceedings of the American Mathematical Society 7 (1956) 48–50.

    Article  MathSciNet  Google Scholar 

  16. S. Kullback, Information Theory and Statistics (Dover, 1968).

  17. S. Kullback and R.A. Leiber, On information and sufficiency, Annals of Mathematical Statistics 22 (1951) 79–86.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Manski, Partial Identification of Probability Distributions (Department of Economics, Northwestern University, USA: Draft book, 2002).

  19. R. Montemanni, A Benders decomposition approach for the robust spanning tree problem with interval data, European Journal of Operational Research. Forthcoming.

  20. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity (Prentice Hall, New York, 1982).

    MATH  Google Scholar 

  21. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Mateo, 1988).

    Google Scholar 

  22. W. Perks, Some observations on inverse probability, Journal of the Institute of Actuaries 73 (1947) 285–312.

    MathSciNet  Google Scholar 

  23. M. Ramoni and P. Sebastiani, Robust learning with missing data, Machine Learning 45(2) (2001) 147–170.

    Article  MATH  Google Scholar 

  24. T. Verma and J. Pearl, Equivalence and synthesis of causal models, in: UAI'90, eds. P.P. Bonissone, M. Henrion, L.N. Kanal and J.F. Lemmer (New York, 1990) pp. 220–227.

  25. P. Walley, Statistical Reasoning with Imprecise Probabilities (Chapman and Hall, New York, 1991).

    MATH  Google Scholar 

  26. P. Walley, Inferences from multinomial data: learning about a bag of marbles, Journal of the Royal Statistical Society B 58(1) (1996) 3–57.

    MATH  MathSciNet  Google Scholar 

  27. D.H. Wolpert and D.R. Wolf, Estimating functions of distributions from a finite set of samples, Physical Review E 52(6) (1995) 6841–6854.

    Article  MathSciNet  Google Scholar 

  28. H. Yaman, O.E. Karaşan and M.C. Pinar, The robust spanning tree problem with interval data, Operations Research Letters 29 (2001) 31–40.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Zaffalon, Exact credal treatment of missing data, Journal of Statistical Planning and Inference 105(1) (2002) 105–122.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zaffalon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaffalon, M., Hutter, M. Robust inference of trees. Ann Math Artif Intell 45, 215–239 (2005). https://doi.org/10.1007/s10472-005-9007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-005-9007-9

Keywords

AMS subject classification

Navigation