Skip to main content
Log in

Restarts and exponential acceleration of the Davis-Putnam-Loveland-Logemann algorithm: A large deviation analysis of the generalized unit clause heuristic for random 3-SAT

  • Published:
Annals of Mathematics and Artificial Intelligence Aims and scope Submit manuscript

Abstract

An analysis of the hardness of resolution of random 3-SAT instances using the Davis-Putnam-Loveland-Logemann (DPLL) algorithm slightly below threshold is presented. While finding a solution for such instances demands exponential effort with high probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly in the size of the instance only. We compute analytically this exponentially small probability of easy resolutions from a large deviation analysis of DPLL with the Generalized Unit Clause search heuristic, and show that the corresponding exponent is smaller (in absolute value) than the growth exponent of the typical resolution time. Our study therefore gives some quantitative basis to heuristic restart solving procedures, and suggests a natural cut-off cost (the size of the instance) for the restart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Achlioptas, Lower bounds for random 3-SAT via differential equations, Theoretical Computer Science 265 (2001) 159–185.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Achlioptas, P. Beame and M. Molloy, A sharp threshold in proof complexity, in: Proceedings of STOC ‘01 (2001) pp. 337–346.

  3. D. Achlioptas and M. Molloy, Analysis of a list-coloring algorithm on a random graph, in: Proceedings of FOCS 97 (1997) pp. 204–212.

  4. D. Achlioptas, L. Kirousis, E. Kranakis and D. Krizanc, Rigorous results for random (2 + p)-SAT, Theoretical Computer Science 265 (2001) 109–129.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Beame, R. Karp, T. Pitassi and M. Saks, in: ACM Symp. on Theory of Computing (STOC’98) (Assoc. Comput. Mach., New York, 1998) 561–571.

    Google Scholar 

  6. M.T. Chao and J. Franco, Probabilistic analysis of two heuristics for the 3-satisfiability problem, SIAM Journal on Computing 15 (1986) 1106–1118.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.T. Chao and J. Franco, Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the k-satisfiability problem, Information Science 51 (1990) 289–314.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Chvàtal and E. Szmeredi, Many hard examples for resolution, Journal of the ACM 35 (1988) 759–768.

    Article  MATH  Google Scholar 

  9. C. Coarfa, D.D. Dernopoulos, A. San Miguel Aguirre, D. Subramanian and M.Y. Vardi, Random 3-SAT: The plot thickens, in: Proc. Principles and Practice of Constraint Programming (CP’2000), ed. R. Dechter, Lecture Notes in Computer Science, Vol. 1894 (2000) pp. 143–159.

  10. S. Cocco and R. Monasson, Trajectories in phase diagrams, growth processes and computational complexity: how search algorithms solve the 3-satisfiability problem, Phys. Rev. Lett. 86 (2001) 1654.

    Article  Google Scholar 

  11. S. Cocco and R. Monasson, Analysis of the computational complexity of solving random satisfiability problems using branch and bound search algorithms, Eur. Phys. J. B 22 (2001) 505.

    Article  Google Scholar 

  12. S. Cocco and R. Monasson, Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random satisifiability problem, and its application to stop-and-restart resolutions, Phys. Rev. E 66 (2002) 037101.

    Article  MathSciNet  Google Scholar 

  13. J. Crawford and L. Auton, Experimental results on the cross-over point in satisfiability problems, in: Proc. 11th Natl. Conference on Artificial Intelligence (AAAI-93) (The AAAI Press/MIT Press, Cambridge, MA, 1993) 21–27; Artificial Intelligence 81 (1996).

    Google Scholar 

  14. M. Davis, G. Logemann and D. Loveland, A machine program for theorem proving, Communications of the ACM 5 (1962) 394–397.

    Article  MATH  MathSciNet  Google Scholar 

  15. O. Dubois, P. Andre, Y. Boufkhad and J. Carlier, SAT versus UNSAT, in: Second DIMACS Challenge, eds. D.S. Johnson and M.A. Trick, DIMACS Series in Discrete Math. and Computer Science (Amer. Math. Soc., Providence, RI, 1993) 415–436.

    Google Scholar 

  16. O. Dubois, Y. Boufkhad and J. Mandler, Typical random 3-SAT formulae and the satisfiability threshold, in: Proc. of ACM-SIAM Symposium on Discrete Algorithms (2000) pp. 126–127.

  17. O. Dubois, R. Monasson, B. Selman and R. Zecchina (eds.), Phase transitions in combinatorial problems, Theor. Comp. Sci. 265(1–2) (2001).

  18. J. Franco, Results related to thresholds phenomena research in satisfiability: lower bounds, Theor. Comp. Sci. 265 (2001) 147–157.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem, Journal of the AMS 12 (1999) 1017.

    MATH  MathSciNet  Google Scholar 

  20. A. Frieze and S. Suen, Analysis of two simple heuristics on a random instance of k-SAT, Journal of Algorithms 20 (1996) 312–335.

    Article  MATH  MathSciNet  Google Scholar 

  21. I.P. Gent and T. Walsh, Easy problems are sometimes hard, Artificial Intelligence 70 (1994) 335–345.

    Article  MATH  MathSciNet  Google Scholar 

  22. I. Gent, H. van Maaren and T. Walsh (eds.), SAT2000: Highlights of Satisfiability Research in the Year 2000, Frontiers in Artificial Intelligence and Applications, Vol. 63 (IOS Press, Amsterdam, 2000).

    Google Scholar 

  23. C.P. Gomes, B. Selman, N. Crato and H. Kautz, J. Automated Reasoning 24 (2000) 67.

    Google Scholar 

  24. J. Gu, P.W. Purdom, J. Franco and B.W. Wah, Algorithms for satisfiability (SAT) problem: a survey, in: DIMACS Series on Discrete Mathematics and Theoretical Computer Science, Vol. 35 (American Mathematical Society, 1997) pp. 19–151.

  25. A. Hartmann and M. Weigt, Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs, Phys. Rev. Lett. 86 (2001) 1658.

    Article  Google Scholar 

  26. T. Hogg, B.A. Huberman and C. Williams (eds.), Artificial Intelligence 81(1–2), Special Issue on Frontiers in Problem Solving: Phase Transitions and Complexity (1996).

  27. T. Hogg and C.P. Williams, The hardest constraint problems: a double phase transition, Artificial Intelligence 69 (1994) 359–377.

    Article  MATH  Google Scholar 

  28. A.C. Kaporis, L.M. Kirousis and E.G. Lalas, The probabilistic analysis of a greedy satisfiability algorithm, in: ESA (2002) pp. 574–585.

  29. S. Kirkpatrick and B. Selman, Critical behavior in the satisfiability of random Boolean expressions, Science 264 (1994) 1297–1301.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Mitchell, B. Selman and H. Levesque, Hard and easy distributions of SAT problems, in: Proc. of the Tenth Natl. Conf. on Artificial Intelligence (AAAI-92) (The AAAI Press/MIT Press, Cambridge, MA, 1992) 440–446.

    Google Scholar 

  31. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, Determining computational complexity from characteristic ‘phase transitions’, Nature 400 (1999) 133–137.

    Article  MathSciNet  Google Scholar 

  32. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman and L. Troyansky, 2 + p-SAT: Relation of typical-case complexity to the nature of the phase transition, Random Structure and Algorithms 15 (1999) 414.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Montanari and R. Zecchina, Boosting search by rare events, Phys. Rev. Lett. 88 (2002) 178701.

    Article  Google Scholar 

  34. B. Selman and S. Kirkpatrick, Critical behavior in the computational cost of satisfiability testing, Artificial Intelligence 81 (1996) 273–295.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocco, S., Monasson, R. Restarts and exponential acceleration of the Davis-Putnam-Loveland-Logemann algorithm: A large deviation analysis of the generalized unit clause heuristic for random 3-SAT. Ann Math Artif Intell 43, 153–172 (2005). https://doi.org/10.1007/s10472-005-0426-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10472-005-0426-4

Keywords

Navigation