Skip to main content
Log in

A multiplier-less meminductor emulator with experimental results and neuromorphic application

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript


This research article presents a meminductor emulator without multiplier using double output second generation current conveyor (DO-CCII) and operational trans-conductance amplifiers (OTA) and minimum numbers of passive elements. The mathematical expression of meminductor is obtained and verified through various simulation i.e., hysteresis analysis, non-volatile analysis and process corner analysis. Also, presented post-layout simulation of silicon components (DO-CCII and OTA). Application of meminductor emulator as Amoeba behaviour is also incorporated in the Neuromorphic circuit. Furthermore, an experimental setup was also build using the off the shelf ICs AD844AN (for DO-CCII) and CA3080EZ (for OTA) to examine the experimental results. The proposed meminductor emulator is simulated in Cadence Virtuoso tool using standard CMOS 90 nm technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others


  1. Chua, L. O. (1971). Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Ventra, M. D., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97(10), 1717–1724.

    Article  Google Scholar 

  3. Yin, Z., Tian, H., Chen, G., & Chua, L. O. (2015). What are memristor, memcapacitor, and meminductor? IEEE Transactions on Circuits and Systems II: Express Briefs, 62(4), 402–406.

    Article  Google Scholar 

  4. Esch, J. (2009). Prolog to: Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97(10), 1715–1716.

    Article  Google Scholar 

  5. Emara, A. A. M., Aboudina, M. M., & Fahmy, H. A. H. (2017). Non-volatile low-power crossbar memcapacitor-based memory. Microelectronics Journal, 64, 39–44.

    Article  Google Scholar 

  6. Adam, G. C., Hoskins, B. D., Prezioso, M., Merrikh-Bayat, F., Chakrabarti, B., & Strukov, D. B. (2017). 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Transactions on Electron Devices, 64(1), 312–318.

    Article  Google Scholar 

  7. Driscoll, T., et al. (2010). Memristive adaptive filters. Applied Physics Letters, 97(9), 093502.

    Article  Google Scholar 

  8. Zhao, Q., et al. (2019). A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos, 29(1), 013141.

    Article  MathSciNet  Google Scholar 

  9. Wang, X., Yu, J., Jin, C., et al. (2019). Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dynamics, 96, 161–173.

    Article  Google Scholar 

  10. Yu, D., Ho-Ching Iu, H., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator-based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers., 61(10), 2888–2896.

    Google Scholar 

  11. Vourkas I., Abusleme A., Ntinas V., Sirakoulis G. C., & Rubio A. (2016). A digital memristor emulator for FPGA-based artificial neural networks. In: Proc. IVSW, St. Feliu de Guixols, Spain, pp. 1–4.

  12. BiolekD., Biolek Z., & Biolkova V. (2009). SPICE modeling of memristive, memcapacitative and meminductive systems. 2009 European conference on circuit theory and design, Antalya, Turkey, pp. 249–252,

  13. Strukov, D. B., Stewart, G. S., & Williams, R. S. (2008). The missing memristor found. Nature Letters, 453, 80–83.

    Article  Google Scholar 

  14. Petrović, P. B. (2022). A new electronically controlled floating/grounded meminductor emulator based on single MO-VDTA. Analog Integrated Circuits and Signal Processing, 110, 185–195.

    Article  Google Scholar 

  15. Liang, Y., Chen, H., & Yu, D. S. (2014). A practical implementation of a floating memristor-less meminductor emulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 299–303.

    Article  Google Scholar 

  16. Yu, D., Zhao, X., Sun, T., Iu, H. H. C., & Fernando, T. (2020). A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(7), 1334–1338.

    Article  Google Scholar 

  17. SahM.P., et al. (2014). A mutator-based meminductor emulator circuit. In 2014 IEEE international symposium on circuits and systems (ISCAS) pp. 2249–2252.

  18. Singh, A., & Rai, S. K. (2022). New meminductor emulators using single operational amplifier and their application. Circuits, Systems, and Signal Processing, 41, 2322–2337.

    Article  Google Scholar 

  19. Singh, A., & Rai, S. K. (2021). VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 1151–1163.

    Article  Google Scholar 

  20. Gülru, Z., Taşkıran, C., Sağbaş, M., Ayten, U. E., & Sedef, H. (2020). A new universal mutator circuit for memcapacitor and meminductor elements. AEU—International Journal of Electronics and Communications, 119, 153180.

    Google Scholar 

  21. Biolek, D., Biolkova, V., & Kolka, A. (2010). Mutators simulating memcapacitors and meminductors. In Proceedings of IEEE Asia-Pacific conferences on circuits and systems, 2010, 800–803.

    Google Scholar 

  22. Vista, J., & Ranjan, A. (2020). Simple charge controlled floating memcapacitor emulator using DXCCDITA. Analog Integrated Circuits and Signal Processing, 104(1), 37–46.

    Article  Google Scholar 

  23. Korkmaz, M. O., Babacan, Y., & Yesil, A. (2023). A new CCII based meminductor emulator circuit and its experimental results. AEU—International Journal of Electronics and Communications., 158, 154450.

    Article  Google Scholar 

  24. Fouda M. E., & Radwan A. G. (2014). Memristor-less current- and voltage-controlled meminductor emulators. 2014 21st IEEE International conference on electronics, circuits and systems (ICECS), Marseille, France, pp. 279–282,

  25. Fang, Y., et al. (2020). A multistable generalized meminductor with coexisting stable pinched hysteresis loops. International Journal of Bifurcation and Chaos, 30, 2050023.

    Article  MathSciNet  Google Scholar 

  26. Mustafa, K., & Kaçar, F. (2020). Electronically tunable meminductor based on OTA Aeu-international Journal of. Electronics and Communications, 126, 153391.

    Google Scholar 

  27. Babacan, Y. (2018). An operational transconductance amplifier-based memcapacitor and meminductor. Electrica, 18(1), 36–38.

    MathSciNet  Google Scholar 

  28. Sozen, H., & Cam, U. (2020). A novel floating/grounded meminductor emulator. Journal of Circuits, Systems and Computers, 29(15), 2050247.

    Article  Google Scholar 

  29. Bhardwaj, K., & Srivastava, M. (2021). New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectronics Journal, 114, 105126.

    Article  Google Scholar 

  30. Yeşil, A., Babacan, Y., & Kaçar, F. (2019). Design and experimental evolution of memristor with only one VDTA and one capacitor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(6), 1123–1132.

    Article  Google Scholar 

  31. Raj, A., Singh, S., & Kumar, P. (2021). Electronically tunable high frequency single output OTA and DVCC based meminductor. Analog Integrated Circuits and Signal Processing, 109, 47–55.

    Article  Google Scholar 

  32. Raj, A., Kumar, K., & Kumar, P. (2021). CMOS realization of OTA based tunable grounded meminductor. Analog Integrated Circuits and Signal Processing, 107, 475–482.

    Article  Google Scholar 

  33. Indhrani, V., Srinivasan, A., & Vaishali, P. K. (2022). Floating and grounded meminductor using VDTA and neuromorphic circuit based on amoeba behaviour. Transactions on Electrical and Electronic Materials, 23, 414–418.

    Article  Google Scholar 

  34. Surakampontorn, W., Riewruja, V., Kumwachara, K., & Dejhan, K. (1991). Accurate CMOS-based current conveyors. IEEE Transactions on Instrumentation and Measurement, 40, 699–702.

    Article  Google Scholar 

  35. Ranjan, R. K., Bhuwal, N., Raj, N., & Khateb, F. (2017). Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU—International Journal of Electronics and Communications, 82, 177–190.

    Article  Google Scholar 

  36. Shankar, C., & Singh, S. V. (2019). High input impedance trans-admittance mode biquad universal filter employing DVCCTAs and grounded passive elements. Indian Journal of Pure and Applied Physics., 57, 52–62.

    Google Scholar 

  37. Pershin, Y. V., & Ventra, M. D. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23, 881886.

    Article  Google Scholar 

  38. Moon, K., Park, S., Jang, J., Lee, D., Woo, J., Cha, E., Lee, S., Park, J., Song, J., Koo, Y., & Hwang, H. (2014). Hardware implementation of associative memory characteristics with analogue-type resistive-switching device. Nanotechnology, 25(49), 495204.

    Article  Google Scholar 

  39. Pershin, Y. V., Fontaine, S. L., & Ventra, M. D. (2009). Memristive model of amoeba learning. Physical Review E, 80, 021926.

    Article  Google Scholar 

  40. Wang, F. A., Chua, L. O., Yang, X., Helian, N., Tetzlaff, R., Schmidt, T., Li, C., Carrasco, J. M. G., Chen, W., & Chua, D. (2013). Adaptive neuromorphic architecture. Neural Networks, 45, 111–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations



Mr. Suresh is a research scholar he did the simulation part and the experimental works. Dr. Chandra Shankar find out the topic, mathematical analysis of circuit, ideal and parasitic analysis, survey of the various meminductor papers etc. Dr. Rudraswamy helps to write the manuscript , grammatical corrections etc.

Corresponding author

Correspondence to Chandra Shankar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresha, B., Shankar, C. & Rudraswamy, S.B. A multiplier-less meminductor emulator with experimental results and neuromorphic application. Analog Integr Circ Sig Process 120, 109–123 (2024).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: