Skip to main content
Log in

A fractional order HP memristive system with a line of equilibria, its bifurcation analysis, circuit simulation and ARM-FPGA-based implementation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this research work, we propose to investigate the effect of fractional-order on the dynamics of a four dimensional (4D) chaotic system by adding a new model of a memristor, which is an essential electronic element with interesting applications. First introduced by Li et al. (Int J Circuit Theory Appl 42(11):1172–1188, 2014, https://doi.org/10.1002/cta.1912), the original system is investigated prior to the more detailed study by Pham et al., The system is found to be self-excited, has a line of equilibrium which are all unstable with regards to the stability condition of fractional-order systems. The bifurcation tools associated with lyapunov exponents reveal the rich dynamics behavior of the proposed system. Our analysis shows that the degree of complexity of the system increases as the fractional-order decreases from 1 to 0.97. Of most/particuar interest, an analog electronic circuit is designed and implemented in PSPICE for verification and confirmed by laboratory experimental measurements. Finally, an ARM-FPGA-based implementation of the 4D fractional-order chaotic system is presented in this work to illustrate the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Algorithm 1

Similar content being viewed by others

Data availibility

The research data used to support the findings of this study is described and included in the article. Furthermore, some of the data used in the study are also supported by provided references as described in the article.

References

  1. Bertram, R. (1977). Fractional calculus. Mathematics Magazine, 50(3), 115–122.

    Article  MathSciNet  Google Scholar 

  2. Podlubny, I. (1999). Fractional differential equations, vol. 198 of mathematics in science and engineering.

  3. Bagley, R. L., & Calico, R. A. (1991). Fractional order state equations for the control of viscoelasticallydamped structures. Journal of Guidance, Control, and Dynamics, 14(2), 304–311.

    Article  Google Scholar 

  4. Koeller, R. C. (1984). Applications of fractional calculus to the theory of viscoelasticity.

  5. Kulish, V. V., & Lage, J. L. (2002). Application of fractional calculus to fluid mechanics. Journal of Fluids Engineering, 124(3), 803–806.

    Article  Google Scholar 

  6. Tripathi, D., Pandey, S. K., & Das, S. (2010). Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Applied Mathematics and Computation, 215(10), 3645–3654.

    Article  MathSciNet  Google Scholar 

  7. Carpinteri, A., Cornetti, P., & Kolwankar, K. M. (2004). Calculation of the tensile and flexural strength of disordered materials using fractional calculus. Chaos, Solitons & Fractals, 21(3), 623–632.

    Article  Google Scholar 

  8. Sun, H. H., Abdelwahab, A., & Onaral, B. (1984). Linear approximation of transfer function with a pole of fractional power. IEEE Transactions on Automatic Control, 29(5), 441–444.

    Article  Google Scholar 

  9. Heaviside, O. (1971). Electromagnetic theory. New York: Chelsea Publishing Company.

    Google Scholar 

  10. Popović, J. K., Pilipović, S., & Atanacković, T. M. (2013). Two compartmental fractional derivative model with fractional derivatives of different order. Communications in Nonlinear Science and Numerical Simulation, 18(9), 2507–2514.

    Article  MathSciNet  Google Scholar 

  11. Magin, R. L. (2010). Fractional calculus models of complex dynamics in biological tissues. Computers and Mathematics with Applications, 59(5), 1586–1593.

    Article  MathSciNet  Google Scholar 

  12. Gökdoğan, A., Merdan, M., & Yildirim, A. (2012). A multistage differential transformation method for approximate solution of hantavirus infection model. Communications in Nonlinear Science and Numerical Simulation, 17(1), 1–8.

    Article  MathSciNet  Google Scholar 

  13. Li, C., & Chen, G. (2004). Chaos and hyperchaos in the fractional-order Rössler equations. Physica A: Statistical Mechanics and its Applications, 341, 55–61.

    Article  MathSciNet  Google Scholar 

  14. Fa-Qiang, W., & Chong-Xin, L. (2006). Hyperchaos evolved from the Liu chaotic system. Chinese Physics, 15(5), 963.

    Article  Google Scholar 

  15. Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  16. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83.

    Article  Google Scholar 

  17. Xia, Q., Robinett, W., Cumbie, M. W., Banerjee, N., Cardinali, T. J., Yang, J. J., Wu, W., Li, X., Tong, W. M., Strukov, D. B., & Snider, G. S. (2009). Memristor- CMOS hybrid integrated circuits for reconfigurable logic. Nano Letters, 9(10), 3640–3645.

    Article  Google Scholar 

  18. Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuit. International Journal of Bifurcation and Chaos, 20(05), 1567–1580.

    Article  Google Scholar 

  19. Ruan, J., Sun, K., Mou, J., He, S., & Zhang, L. (2018). Fractional-order simplest memristor-based chaotic circuit with new derivative. The European Physical Journal Plus, 133(1), 1–12.

    Article  Google Scholar 

  20. Ferrari, F. A. S., Prado, T. L., da Silva, T. F. P., dos Santos, C. M., Santos, M. S., de Souza, S. L. T., Iarosz, K. C., Szezech, J. D., & Batista, A. M. (2019). Numerical simulations of the linear drift memristor model. The European Physical Journal Plus, 134(3), 102.

    Article  Google Scholar 

  21. Luo, J., Xu, X., Ding, Y., Yuan, Y., Yang, B., Sun, K., & Yin, L. (2018). Application of a memristor-based oscillator to weak signal detection. The European Physical Journal Plus, 133(6), 239.

    Article  Google Scholar 

  22. Ding, D., Qian, X., Hu, W., Wang, N., & Liang, D. (2017). Chaos and Hopf bifurcation control in a fractional-order memristor-based chaotic system with time delay. The European Physical Journal Plus, 132(11), 447.

    Article  Google Scholar 

  23. Bao, B. C., Shi, G. D., Xu, J. P., Liu, Z., & Pan, S. H. (2011). Dynamics analysis of chaotic circuit with two memristors. Science China Technological Sciences, 54(8), 2180–2187.

    Article  Google Scholar 

  24. Bao, B. C., Hu, F. W., Liu, Z., & Xu, J. P. (2014). Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit. Chinese Physics B, 23(7), 070503.

    Article  Google Scholar 

  25. Pu, Y.-F., & Yuan, X. (2016). Fracmemristor: Fractional-order memristor. IEEE Access, 4, 1872–1888.

    Article  Google Scholar 

  26. Rajagopal, K., Guessas, L., Karthikeyan, A., Srinivasan, A., & Adam G. (2017). Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization. Complexity, 2017.

  27. Li, Q., Hu, S., Tang, S., & Zeng, G. (2014). Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. International Journal of Circuit Theory and Applications, 42(11), 1172–1188.

    Article  Google Scholar 

  28. Pham, V.-T., Volos, C. K., Vaidyanathan, S., Le, T. P., & Vu, V. Y. (2015). A memristor-based hyperchaotic system with hidden attractors: Dynamics, synchronization and circuital emulating. Journal of Engineering Science and Technology Review, 8(2).

  29. Yuan, F., Wang, G. Y., & Wang, X. Y. (2015). Dynamical characteristics of an HP memristor based on an equivalent circuit model in a chaotic oscillator. Chinese Physics B, 24(6), 060506.

    Article  Google Scholar 

  30. Vaidyanathan, S., & Volos, C. (2017). Advances in memristors, memristive devices and systems (Vol. 701). Berlin: Springer.

    Google Scholar 

  31. Lazarević, M. P., Rapaić, M. R., Šekara, T. B., Mladenov, V., & Mastorakis, N. (2014). Introduction to fractional calculus with brief historical background. In Chapter in book:”Advanced topics on applications of fractional calculus on control problems, system stability and modeling (pp. 3–16). WSAES Press.

  32. Yang, N., Xu, C., Wu, C., Jia, R., & Liu, C. (2017). Modeling and analysis of a fractional-order generalized memristor-based chaotic system and circuit implementation. International Journal of Bifurcation and Chaos, 27(13), 1750199.

    Article  MathSciNet  Google Scholar 

  33. Clemente-López, D., Muñoz-Pacheco, J. M., Félix-Beltrán, O. G., & Volos, C. (2019) Efficient computation of the Grünwald–Letnikov method for arm-based implementations of fractional-order chaotic systems. In 2019 8th International conference on modern circuits and systems technologies (MOCAST) (pp. 1–4). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, T.B.F., Alain, K.S.T., Vaidyanathan, S. et al. A fractional order HP memristive system with a line of equilibria, its bifurcation analysis, circuit simulation and ARM-FPGA-based implementation. Analog Integr Circ Sig Process 118, 91–107 (2024). https://doi.org/10.1007/s10470-023-02199-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02199-z

Keywords

Navigation