Skip to main content
Log in

Universal memelement emulator using only off-the-shelf components

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The memelement emulation using Operational Transconductance Amplifiers (OTAs) has been quite popular in the last decade. Interestingly, a detailed literature survey reveals that only voltage-biased OTAs have been used so far, for their emulators, which may be due to the ease of linear memelement function realization (through just bias voltage application by employing a capacitance). But this technique has disadvantages; most commercially available OTAs are current biased, voltage biasing does not provide a better range for tunability, and current biasing is more stable and can be easily provided through current mirrors in large circuits. Therefore, the presented work proposes a Universal memelement emulator (UME) using only current-biased Active elements (which are purely off-the-shelf). The developed UME uses four single output OTAs, one CCII (Second Generation Current Conveyor) along with only three grounded passive elements. Overall, the designed circuit configuration is based on just forty CMOS transistors, which is the least as compared to other existing UMEs. And also, the exhibited operating frequency limit is found to be in the MHz range for memristor and above 100 kHz for other realized memelements. The paper also describes the application examples of proposed UME in the relaxation oscillator and in a neuromorphic circuit exhibiting the Amoeba behavior. To verify the designed circuits, the simulations have been executed in PSPICE using 0.18 µm CMOS technology. Lastly, the realization of the proposed UME has been shown via commercial ICs; LM13700 and AD844, and results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

Not Applicable.

References

  1. Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Trans. Circuit. Theory, 18, 507–519.

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  3. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review and new proposals. Radioengineering, 17(4), 15–32.

    Google Scholar 

  4. Gupta, S., & Rai, S. K. (2020). New Grounded and Floating Decremental/Incremental Memristor Emulators Based on CDTA and Its Application. Wireless Personal Communications, 113, 773–798.

    Article  Google Scholar 

  5. Yadav, N., Rai, S. K., & Pandey, R. (2020). New grounded and floating memristor emulators using OTA and CDBA. International Journal of Circuit Theory and Applications, 48(7), 1154–1179.

    Article  Google Scholar 

  6. Yesil, A., Babacan, Y., & Kacar, F. (2020). An electronically controllable, fully floating memristor based on active elements: DO-OTA and DVCC. AEU-International Journal of Electronics and Communications, 123, 153315.

    Google Scholar 

  7. Babacan, Y., Yesil, A., & Kacar, F. (2017). Memristor emulator with tunable characteristic and its experimental results. AEU-International Journal of Electronics and Communications, 81, 99–104.

    Google Scholar 

  8. Kim, H., Sath, M. P., Yang, C., Cho, S., & Chua, L. O. (2012). Memristor emulator for memristor circuit applications. IEEE Transactions on Circuits and Systems I: Regular Papers, I(59), 2422–2431.

    MathSciNet  MATH  Google Scholar 

  9. Yu, D., Iu, H. H. C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(10), 2888–2896.

    Article  Google Scholar 

  10. Sánchez-López, C., Mendoza-Lopez, J., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 309–313.

    Google Scholar 

  11. Ranjan, R. K., Sharma, P. K., Sagar, R. N., Kumari, B., & Khateb, F. (2019). Memristor emulator circuit using multiple-output OTA and its experimental results. Journal of Circuits, Systems and Computers, 28(10), 1950166. https://doi.org/10.1142/S0218126619501664

    Article  Google Scholar 

  12. Abuelma’atti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584.

    Article  Google Scholar 

  13. Thongrak, A., Sitjongsataporn, S., Khunkhao, S., & Moungnoul, P. (2019). A practical implementation of memristor emulator circuit based on operational transconductance amplifiers. International Journal of Intelligent Engineering and Systems., 12, 37–46.

    Article  Google Scholar 

  14. Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015). A novel memristor emulator based only on an exponential amplifier and ccii+. In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) (pp. 376-379). IEEE.

  15. Li, Z., Zeng, Y., Ma, M. (2017). A novel floating memristor emulator with minimal components. Active and Passive Electronic Components 12.

  16. Abuelma’atti, M. T., & Khalifa, Z. J. (2015). A continuous level memristor emulator and its application in a multivibrator circuit. International Journal of Electronics and communication (AEU), 69, 771–775.

    Article  Google Scholar 

  17. Yang, C., Choi, H., Park, S., Sah, M. P., Kim, H., & Chua, L. O. (2015). A memristor emulator as a replacement of a real memristor. Semiconductor Science and Technology, 30(1), 015007.

    Article  Google Scholar 

  18. Alharbi, A. G., Khalifa, Z. J., Fouda, M. E., & Chowdhury, M. H. (2015). Memristor emulator based on single CCII. In 2015 27th International Conference on Microelectronics (ICM) (pp. 174-177). IEEE. https://doi.org/10.1109/ICM.2015.7438016.

  19. Alharbi, A. G., Fouda, M. E., & Chowdhury, M. H. (2015). Memristor emulator based on practical current controlled model. In 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1-4). IEEE. https://doi.org/10.1109/MWSCAS.2015.7282109.

  20. Alharbi, A. G., Fouda, M. E., Khalifa, Z. J., & Chowdhury, M. H. (2017). Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access, 5, 5399–5409. https://doi.org/10.1109/ACCESS.2017.2695402

    Article  Google Scholar 

  21. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Mutator-based meminductor emulator for circuit applications. Circuits, Systems, and Signal Processing, 33(8), 2363–2383. https://doi.org/10.1007/s00034-014-9758-9

    Article  Google Scholar 

  22. Romero, F. J., Escudero, M., Medina-Garcia, A., Morales, D. P., & Rodriguez, N. (2020). Meminductor emulator based on a modified antoniou’s gyrator circuit. Electronics, 9(9), 1407. https://doi.org/10.3390/electronics9091407

    Article  Google Scholar 

  23. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Charge controlled meminductor emulator. JSTS Journal of Semiconductor Technology and Science, 14(6), 750–754.

    Article  Google Scholar 

  24. Yuan, F., Deng, Y., & Li, Y. (2020). A multistable generalized meminductor with coexisting stable pinched hysteresis loops. International Journal of Bifurcation and Chaos., 30, 2050023. https://doi.org/10.1142/S0218127420500236

    Article  MathSciNet  Google Scholar 

  25. Sozen, H., & Cam, U. (2020). A novel floating/grounded meminductor emulator. Journal of Circuits, Systems and Computers, 29(15), 2050247. https://doi.org/10.1142/S0218126620502473

    Article  Google Scholar 

  26. Yuan, F., Deng, Y., Li, Y., & Wang, G. (2019). The amplitude, frequency and parameter space boosting in a memristor–meminductor-based circuit. Nonlinear Dynamics. https://doi.org/10.1007/s11071-019-04795-z

    Article  MATH  Google Scholar 

  27. Birong, X., Wang, G., Iu, H., Simin, Y., & Yuan, F. (2019). A memristor–meminductor-based chaotic system with abundant dynamical behaviors. Nonlinear Dynamics. https://doi.org/10.1007/s11071-019-04820-1

    Article  MATH  Google Scholar 

  28. Singh, A., & Rai, S. K. (2021). Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. Journal of Circuits, Systems and Computers, 30(12), 2150219. https://doi.org/10.1142/S0218126621502194

    Article  Google Scholar 

  29. Yuan, F., Li, Y., Wang, G., Dou, G., & Chen, G. (2019). Complex dynamics in a memcapacitor-based circuit. Entropy, 21(2), 188. https://doi.org/10.3390/e21020188

    Article  MathSciNet  Google Scholar 

  30. Setoudeh, F., & Dezhdar, M. M. (2020). A New Design and Implementation of the Floating-Type Charge-Controlled Memcapacitor Emulator. Majlesi Journal of Telecommunication Devices, 9(2).

  31. Fouda, M. E., & Radwan, A. (2012). Charge controlled memristor-less memcapacitor emulator. Electronics letters. https://doi.org/10.1049/el.2012.3151

    Article  Google Scholar 

  32. Biolek, D., Biolková, V., Kolka, Z., & Dobes, J. (2015). Analog emulator of genuinely floating memcapacitor with piecewise-linear constitutive relation. Circuits, Systems, and Signal Processing. https://doi.org/10.1007/s00034-015-0067-8

    Article  Google Scholar 

  33. Francisco, R., Diego, M., Godoy, A., Francisco, R., Isabel, T., Akiko, O., & Noel, R. (2019). Memcapacitor emulator based on the Miller effect. International Journal of Circuit Theory and Applications. https://doi.org/10.1002/cta.2604

    Article  Google Scholar 

  34. Babacan, Y. (2018). An operational transconductance amplifier-based memcapacitor and meminductor. Electrica, 18(1), 36–38.

    MathSciNet  Google Scholar 

  35. Bhardwaj, K., Kumar, A., Srivastava, M., & Alharbi, A. G. (2021, December). Floating memristor emulator using current biased OTAs and single grounded capacitance. In 2021 International Conference on Microelectronics (ICM) (pp. 161-165). IEEE. https://doi.org/10.1109/ICM52667.2021.9664941

  36. Biolek, D., Biolek, Z., & Biolkova, V. (2016). Every nonlinear element from Chua’s table can generate pinched hysteresis loops: generalised homothety theorem. Electronics Letters, 52(26), 1744–1746. https://doi.org/10.1049/el.2016.2961

    Article  Google Scholar 

  37. Toumazu, C., Lidgey, F. T., & Haigh, D. G. (1990). Analog IC design: The current mode approach. London: U.K. Peter Feregrinus.

    Google Scholar 

  38. Dongsheng, Y., Xuanqi, Z., Tingting, S., Herbert, H.C., Tyrone, F. (2019). A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs. https://doi.org/10.1109/TCSII.20192936453

  39. Zhao, Q., & Zhang, X. (2019). A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos: An Interdisciplinary Journal of Nonlinear Science., 29, 013141. https://doi.org/10.1063/1.5081076

    Article  MathSciNet  MATH  Google Scholar 

  40. Singh, A., & Rai, S. K. (2021). VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(4), 1151–1163. https://doi.org/10.1007/s40998-021-00440-x

    Article  Google Scholar 

  41. Sharma, P. K., Ranjan, R. K., Khateb, F., & Kumngern, M. (2020). Charged controlled mem-element emulator and its application in a chaotic system. IEEE Access, 8, 171397–171407. https://doi.org/10.1109/ACCESS.2020.3024769

    Article  Google Scholar 

  42. Taşkıran, Z. G. C., Sağbaş, M., Ayten, U. E., & Sedef, H. (2020). A new universal mutator circuit for memcapacitor and meminductor elements. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2020.153180

    Article  Google Scholar 

  43. Bhardwaj, K., & Srivastava, M. (2021). New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectronics Journal, 114, 105126.

    Article  Google Scholar 

  44. Bhardwaj, K., & Srivastava, M. (2022). New grounded passive elements-based external multiplier-less memelement emulator to realize the floating meminductor and memristor. Analog Integrated Circuits and Signal Processing, 110(3), 409–429.

    Article  Google Scholar 

  45. Bhardwaj, K., & Srivastava, M. (2022). New multiplier-less compact tunable charge-controlled Memelement emulator using grounded passive elements. Circuits, Systems, and Signal Processing, 41(5), 2429–2465.

    Article  Google Scholar 

  46. Pershin, Y. V., Fontaine, S. L., & Ventra, M. D. (2009). Memristive model of amoeba learning. Physical Review E, 80, 021926.

    Article  Google Scholar 

  47. Wang, F. A., Chua, L. O., Yang, X., Helian, N., Tetzlaff, R., Schmidt, T., Li, C., Carrasco, J. M. G., Chen, W., & Chua, D. (2013). Adaptive neuromorphic architecture. Neural Networks, 45, 111–116.

    Article  Google Scholar 

  48. https://www.ti.com/lit/ds/symlink/lm13700.pdf

  49. https://www.ti.com/lit/ds/symlink/ad844.pdf

  50. Biolek, D., Kohl, Z., Vavra, J., Biolková, V., Bhardwaj., K., & Srivastava, M. (2022). Mutual transformation of flux-controlled and charge-controlled memristors. IEEE Access, 10, 68307–68318. https://doi.org/10.1109/ACCESS.2022.3186281

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Srivastava.

Ethics declarations

Conflicts of interest

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, K., Kumar, A. & Srivastava, M. Universal memelement emulator using only off-the-shelf components. Analog Integr Circ Sig Process 114, 175–193 (2023). https://doi.org/10.1007/s10470-022-02075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02075-2

Keywords

Navigation