Skip to main content
Log in

A second-order two-channel time-interleaved delta-sigma modulator circuit design

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Among analog to digital converters, high speed ADCs are accomplished by the time interleaved delta-sigma modulators. The block digital filtering (BDF) method is a proper method to implement the Time-interleaved Delta-sigma modulators (TIDSM). In this method, M delta-sigma modulators are placed in parallel and the sampling rate in each of the parallel channel will be \({\mathrm{f}}_{\mathrm{s}}\),whereby the effective sampling rate become\(\mathrm{M}*{\mathrm{f}}_{\mathrm{s}}\). The serious disadvantage of the TIDSM based on BDF is that its NTF is equal to the standard structure. The time interleaved structure described in this paper is based on Noise Coupled time interleaved delta-sigma modulator (NC-TIDSM) that uses a noise-coupled between the channels. In this modulator not only the effective sampling is increased but also the overall noise transfer function order is increased by two or more without any additional active element. For implementation of the NC-TIDSM structure, the theoretical relations are proved and then these results have been verified by implementation of the second-order two-channel NC-TIDSM in circuit level and in an 180 nm CMOS technology. Using a 1.8 V supply, the SNDR of 62 dB in a 10 MHz signal band is achieved for the second-order two-channel NC-TIDSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings and obtained during this research work are available within the paper.

References

  1. Khoury, J., & Tao, H. (1998). Data converters for communication systems. IEEE Communications Magazine, 36, 113–117.

    Article  Google Scholar 

  2. Maloberti, F. (2007) Data converters. Springer Science & Business Media.

  3. Ren, F. J., Sarwana, S., Sahu, A., Talalaevskii, A., & Inamdar, A. (2015). Low-pass delta-delta-sigma ADC. IEEE Transactions on Applied Superconductivity, 25, 1–6.

    Google Scholar 

  4. Tao, S., & Rusu, A. (2015). A power-efficient CT incremental Σ∆ ADC for multi-channel neural recording systems. Review of IEEE Transactions on Circuits Systems: I Regular Papers, 62, 1–10.

    Article  Google Scholar 

  5. Shanthi, P., Schreier, R., & Temes, G. C. (2017). Understanding delta-sigma data converters. New York: Wiley.

    Google Scholar 

  6. Moradi, R., Farshidi, E., & Soroosh, M. (2018). Digital calibration of memory errors in passive sigma-delta modulator. IETE Journal of Research, 2063, 1–8.

    Google Scholar 

  7. Balmelli, P., & Huang, Q. (2004) 4.2 A 25MS/s 14b 200mW Σ∆ Modulator in 0.18 µm CMOS, in Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International pp. 74–514.

  8. Lee, H., Aurangozeb, Park, S., Kim, J., & Kim, C. (2014). A 6-bit 2.5-GS/s time-interleaved analog-to-digital converter using resistor-array sharing digital-to-analog converter. IEEE Transactions on Very Large Scale Integration Systems, 23, 1–13.

    Google Scholar 

  9. Bolatkale, M., Breems, L. J., Rutten, R., & Makinwa, K. A. A. (2011). A 4 GHz continuous-time ΔΣ ADC with 70 dB DR and -74 dBFS THD in 125 MHz BW. IEEE Journal of Solid-State Circuits, 46, 2857–2868.

    Article  Google Scholar 

  10. Maghari, N., & Moon, U., (2014). Emerging analog-to-digital converters, in European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014–40th. IEEE, pp. 43–50.

  11. Beydoun, A., Nguyen, V. T., & Loumeau, P. (2010). A novel digital calibration technique for gain and offset mismatch in parallel TIΣΔ ADCs, in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing–Proceedings pp. 4158–4161.

  12. Han, C., & Maghari, N. (2015). Time-interleaved noise-coupling delta-sigma modulator using modified noise-shaped integrating quantizer. IEEE Journal on Emerging and Selected Topics in Circuits, 5, 548–560.

    Article  Google Scholar 

  13. Beydoun, A., Nguyen, V. T., Naviner, L., & Loumeau, P. (2013). Optimal digital reconstruction and calibration for multichannel time interleaved ΣΔ ADC based on comb-filters. AEU-International Journal of Electronics and Communications, 67, 329–339.

    Google Scholar 

  14. Lee, S., Chandrakasan, A. P., & Lee, H. (2014). A 1 GS/s 10b 18.9 mW time-interleaved SAR ADC with background timing skew calibration. IEEE Journal of Solid-State Circuits, 49, 2846–2856.

    Article  Google Scholar 

  15. Abbaszadeh, A., Aghdam, E. N., & Rosado-Muñoz, A. (2019). Digital background calibration algorithm and its FPGA implementation for timing mismatch correction of time-interleaved ADC. Analog Integrated Circuits and Signal Processing, 9, 299–310.

    Article  Google Scholar 

  16. Monsurrò, P., Rosato, F., & Trifiletti, A. (2018). New models for the calibration of four-channel time-interleaved ADCs using filter banks. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 141–145.

    Google Scholar 

  17. Eshraghi, A., & Fiez, T. S. (2004). A comparative analysis of parallel delta-sigma ADC architectures. IEEE Transactions on Circuits and Systems I: Regular Papers, 51, 450–458.

    Article  Google Scholar 

  18. Kurosawa, N., Kobayashi, H., Maruyama, K., Sugawara, H., & Kobayashi, K. (2001). Explicit Analysis of channel mismatch effects in time-interleaved adc systems. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 48, 749–756.

    Google Scholar 

  19. Riewruja, V., & Chaikla, A. (2004). A high-speed algorithmic ADC. International Journal of Electronics, 91, 719–733.

    Article  Google Scholar 

  20. Talebzadeh, J., & Kale, I. (2018). A novel two-channel continuous-time time-interleaved 3rd-order sigma-delta modulator with integrator-sharing topology. Analog Integrated Circuits and Signal Processing, 95, 375–385.

    Article  Google Scholar 

  21. Aziz, P. M., Sorensen, H. V., & Van der Spiegel J. (1994). Multi band sigma delta analog to digital conversion, in Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference, Vol. 3, pp. III/249-III/252.

  22. Cormier, R. F., Sculley, T. L., & Bamberger R. H. (1994). Combining subband decomposition and sigma delta modulation for wideband A/D conversion, in Proceedings of IEEE International Symposium on Circuits and Systems-ISCAS ’94, pp. 357–360.

  23. Galton, I., Jensen, H. T., & Member, S. (1995). Delta-sigma modulator based A/D conversion without oversampling. IEEE Transactions on Circuits and Systems, 42, 773–784.

    Article  Google Scholar 

  24. Galton, I., & Jensen, H. (1996). Oversampling parallel delta-sigma modulator A/D conversion. IEEE Transactions on Circuits and Systems, 43, 801–810.

    Article  Google Scholar 

  25. Khoini-poorfard, R., Lim, L. B., & Johns, D. A. (1997). Time-interleaved oversampling A/D converters: Theory and practice. IEEE Transactions on Circuits and Systems, 44, 634–645.

    Article  Google Scholar 

  26. Prakash, J. A. V., Jose, B. R., Mathew, J., & Jose, B. A. (2017). A triple-mode hexa-standard reconfigurable TI cross-coupled ΣΔ modulator. International Journal of Electronics, 104, 1142–1160.

    Article  Google Scholar 

  27. Lee, K. S., Choi, Y., & Maloberti, F. (2005). Domino free 4-path time-interleaved second order sigma-delta modulator. Analog Integrated Circuits and Signal Processing, 43, 225–235.

    Article  Google Scholar 

  28. Razavi, B. (2013). Design considerations for interleaved ADCs. IEEE Journal of Solid-State Circuits, 48, 1806–1817.

    Article  Google Scholar 

  29. Kozak, M., & Kale, I. (1999). A novel topology for time-interleaving in oversampling delta- sigma modulators, in 1999 Third International Conference on Advanced A/D and D/A Conversion Techniques and their Applications, pp. 27–28.

  30. John, D., & Martin K. (2008) Analog Integrated Circuit Design. John Wiley & Sons

  31. Yao Lu, C., Yu Hsieh, C., Liang Chen, H., & Shiun Chiang, J. in Proceedings A High-Resolution Time-Interleaved Delta-Sigma Modulator with Low Oversampling.

  32. Abdoli, M., Najafi Aghdam, E., & Hemmati, F. (2020). A novel noise-coupled time-interleaved delta-sigma modulator with analysis of practical limitations. Analog Integrated Circuits and Signal Processing, 102, 389–401.

    Article  Google Scholar 

  33. Abdoli, M., & Najafi Aghdam, E. (2020). Noise-coupled time-interleaved delta-sigma modulator with reduced hardware complexity. Journal of Circuits Systems and Computers, 30, 2150071.

    Article  Google Scholar 

  34. Huang, Y. C., Wang, Z. G., Liu, W. F., & Zheng, X. (2011). Design of a delta-sigma modulator structured in MASH 2-1-2 with dither of error feedback. 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2011, (d), pp. 33–36. https://doi.org/10.1109/ASEMD.2011.6145061

  35. Fitzgibbon, B., Member, S., & Kennedy, M. P. (2011). Calculation of cycle lengths in higher order error feedback modulators with constant inputs. IEEE Transactions On Circuits And Systems, 58(January), 6–10.

    Google Scholar 

  36. Teymouri, B., & Najafi Aghdam, E. (2015). Stability and sensitivity and optimization of delta sigma modulators, in 2015 23rd Iranian Conference on Electrical Engineering. pp. 1245–1248.

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Najafiaghdam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdoli, M., Najafiaghdam, E. A second-order two-channel time-interleaved delta-sigma modulator circuit design. Analog Integr Circ Sig Process 112, 457–466 (2022). https://doi.org/10.1007/s10470-022-02066-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02066-3

Keywords

Navigation