Skip to main content

A low-power 65-nm CMOS mixer linearized with IM2 injection for V2X applications


In this paper, high linearity, low power down-conversion mixer is presented with a 65-nm CMOS process for vehicle-to-everything (V2X) applications. 5G NR V2X standard has a carrier frequency of 5.9 GHz with 10 and 20 MHz narrow bandwidth options. The mixer design uses a double-balanced topology with a second-order intermodulation injection linearization technique to improve the linearity performance. The charge injection method is also used to decrease the noise figure of the circuit. The designed circuit shows a single sideband integrated noise figure of 16.5 dB with a total conversion gain of 2 dB. The third-order input intercept point is obtained as 19.86 dBm. The design consumes a total current of 6 mA from a 1.2-V supply voltage. To the best of the authors' knowledge, this technique is the first applied to mixer design that has been designed for 5G NR based C-V2X applications in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.


  1. GSA (2020). Automotive-Cellular-V2X Ecosystem (pp. 1–5).

  2. Vitee, N., Ramiah, H., Mak, P. I., Yin, J., & Martins, R. P. (2019). A 3.15-mW +16.0-dBm IIP3 22-dB CG inductively source degenerated Balun-LNA mixer with integrated transformer-based gate inductor and IM2 injection technique. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28, 700–713.

    Article  Google Scholar 

  3. Amiri, M., & Abrishamifar, A. (2015). A high-linear CMOS down conversion mixer using adjusting the second and third-order harmonic in transconductance stage. Journal of Circuits, Systems, and Computers, 24(1), 1–11.

    Article  Google Scholar 

  4. Morad, E., Moussavi, S. Z., Alasvandi, M., & Rasouli, E. (2015). A low voltage, low power and highly linear CMOS down-conversion Gilbert cell mixer using MGTR method. Journal of Circuits, Systems, and Computers, 24(7), 1–9.

    Article  Google Scholar 

  5. Asghari, M., & Yavari, M. (2014). Using interaction between two nonlinear systems to improve IIP3 in active mixers. Electronics Letters, 50(2), 76–77.

    Article  Google Scholar 

  6. Liang, K. H., Lin, C. H., Chang, H. Y., & Chan, Y. J. (2008). A new linearization technique for CMOS RF mixer using third-order transconductance cancellation. IEEE Microwave and Wireless Components Letters, 18(5), 350–352.

    Article  Google Scholar 

  7. Li, H., & Saavedra, C. E. (2019). Linearization of active downconversion mixers at the if using feedforward cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(4), 1620–1631.

    Article  Google Scholar 

  8. Cheng, W., Annema, A. J., Wienk, G. J. M., & Nauta, B. (2013). A flicker noise/IM3 cancellation technique for active mixer using negative impedance. IEEE Journal of Solid-State Circuits, 48(10), 2390–2402.

    Article  Google Scholar 

  9. Ozkan, B., & Zencir, E. (2021). A low-power high-gain and high linearity CMOS RF front-end design involving a charge injection mixer for V2X technology. Journal of Circuits, Systems, and Computers.

    Article  Google Scholar 

  10. Da Chen, J., & Wang, S. H. (2017). A low-power, high-gain, and low-noise 802.11a down-conversion mixer in 0.35-μm SiGe Bi-CMOS technology. Journal of Circuits, Systems, and Computers, 26(9), 1–13.

    Article  Google Scholar 

  11. Mollaalipour, M., & Miar-Naimi, H. (2016). Design and analysis of a highly efficient linearized CMOS subharmonic mixer for zero and low-IF applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(6), 2275–2285.

    Article  Google Scholar 

  12. Mollaalipour, M., & Miar-Naimi, H. (2013). An improved high linearity active CMOS mixer: Design and volterra series analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(8), 2092–2103.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lou, S., & Luong, H. C. (2008). A linearization technique for RF receiver front-end using second-order-intermodulation injection. IEEE Journal of Solid-State Circuits, 43(11), 2404–2412.

    Article  Google Scholar 

  14. Zhang, H., & Sánchez-Sinencio, E. (2011). Linearization techniques for CMOS low noise amplifiers: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(1), 22–36.

    Article  MathSciNet  Google Scholar 

  15. Asghari, M., & Yavari, M. (2016). An IIP3 enhancement technique for CMOS active mixers with a source-degenerated transconductance stage. Microelectronics Journal, 50, 44–49.

    Article  Google Scholar 

  16. Bhatt, D., Mukherjee, J., & Redoute, J. M. (2014). A high isolation linear folded mixer for WiFi applications. In Proceedings of IEEE international symposium on circuits and systems (pp. 694–697).

  17. Vahidfar, M. B., & Shoaei, O. (2008). A high IIP2 mixer enhanced by a new calibration technique for zero-IF receivers. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 219–223.

    Article  Google Scholar 

  18. Solati, P., & Yavari, M. (2019). A wideband high linearity and low-noise CMOS Active mixer using the derivative superposition and noise cancellation techniques. Circuits, Systems, and Signal Processing, 38(7), 2910–2930.

    Article  Google Scholar 

  19. Bijari, A., & Zandian, S. (2019). Linearity improvement in a CMOS down-conversion active mixer for WLAN applications. Analog Integrated Circuits and Signal Processing, 100(2), 483–493.

    Article  Google Scholar 

Download references


This work was supported by the EU ECSEL JU Program under grant number 876125.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bahadır Özkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkan, B., Zencir, E. A low-power 65-nm CMOS mixer linearized with IM2 injection for V2X applications. Analog Integr Circ Sig Process 110, 489–497 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: