Skip to main content
Log in

Nth order voltage-mode universal filter employing only plus type differential difference current conveyor

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A general topology for realizing nth order voltage-mode universal filter responses with multiple-input and single-output using only plus type differential difference current conveyor (DDCC +) is presented in this paper. The proposed nth order filter circuit is implemented with n number of DDCC + s, n number of capacitors, and n number of resistors. All the five filter responses, namely low-pass, high-pass, band-pass, band-stop, and all-pass, can be realized simultaneously for both odd and even order of filter with the same generalized topology. The proposed circuit offers the following advantages: the circuit uses only plus-type of DDCC, no critical matching constraints on passive and active elements, universality properties, no requirement to change the hardware for the realization of odd and even order of the filter, fully cascadable, components used are canonical in the count, use of all grounded resistors except one, and the use of only grounded capacitors. Simulations are performed for the third and fourth order of the universal filter to check the various results and responses using PSPICE 180 nm CMOS TSMC technology parameters. The simulated results agree well with the theoretical predictions. The third-order and the fourth-order filter circuits consume low power, 143 µW, and 189 µW, respectively. Finally, the paper concludes with the comparison of various parameters with the earlier implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

All datasets on which conclusions of the paper rely are presented in the manuscript.

References

  1. Alpaslan, H., & Yuce, E. (2020). DVCC+ based multifunction and universal filters with the high input impedance features. Analog Integrated Circuits and Signal Processing, 103, 325–335.

    Google Scholar 

  2. Chen, H. P. (2014). Voltage-mode multifunction biquadratic filter with one input and six outputs using two ICCIIs. The Scientific World Journal, 2014(432570), 7.

    Google Scholar 

  3. Tangsrirat, W., & Channumsin, O. (2011). High-input impedance voltage-mode multifunction filter using a single DDCCTA and grounded passive elements. Radioengineering, 20(4), 905–910.

    Google Scholar 

  4. Yuce, E., Minaei, S., & Cicekoglu, O. (2006). Universal current-mode active-C filter employing minimum number of passive elements. Analog Integrated Circuits and Signal Processing, 46, 169–171.

    MATH  Google Scholar 

  5. Shah, N. A., Quadri, M., & Iqbal, S. Z. (2007). CDTA based universal transadmittance filter. Analog Integrated Circuits and Signal Processing, 52, 65–69.

    Google Scholar 

  6. Chen, H. (2010). Single CCII-based voltage-mode universal filter. Analog Integrated Circuits and Signal Processing, 62, 259–262.

    Google Scholar 

  7. Kumngern, M., Suksaibul, P., & Khateb, F. (2019). Four-Input One-Output Voltage-Mode Universal Filter Using Simple OTAs. Journal of Circuits, Systems and Computers, 28(5), 1950078.

    Google Scholar 

  8. Yucel, F., & Yuce, E. (2020). Supplementary CCII based second-order universal filter and quadrature oscillators. International Journal of Electronics and Communications, 118, 153138.

    Google Scholar 

  9. Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC Design: The current mode approach. Peter Peregrinus Ltd.

    Google Scholar 

  10. Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. Kluwer.

    Google Scholar 

  11. Acar, C., & Ozoguz, S. (1996). High-order voltage transfer function synthesis using CCII+ based unity gain current amplifiers. Electronics Letters, 32(22), 2030–2031.

    Google Scholar 

  12. Sun, Y., & Fidler, J. K. (1997). Structure generation and design of multiple loop feedback OTA-grounded capacitor filters. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 44(1), 1–11.

    Google Scholar 

  13. Keskin, A. U. (2004). Cascade approach for the realization of high order Voltage-Mode Filters using single CDBA-based first and second order sections. Frequenz, 58(7–8), 188–194.

    Google Scholar 

  14. Hwang, Y. S., Chen, J. J., & Lee, W. T. (2005). High-order linear transformation MOSFET-C filters using operational transresistance amplifiers. IEEE International Symposium on Circuits and Systems, Kobe, Japan, 4, 3275–3278.

    Google Scholar 

  15. Hwang, Y., Wu, D., & Chen, J. (2007). Realization of high-order OTRA-MOSFET-C active filters. Circuits Syst Signal Process, 26, 281–291.

    MATH  Google Scholar 

  16. Nandi, R., Sanyal, S. K., & Bandyopadhyay, T. K. (2008). Third order low-pass Butterworth filter function realisation using CFA. International Journal of Electronics, 95(4), 313–318.

    Google Scholar 

  17. Ranjan, A. & Paul, S. K. (2011). Realization of Active-C Voltage Mode Third Order Band Pass Filter with Current Controlled Current Conveyor (CCCII). In International conference on electronic devices, systems and applications, 229–231.

  18. Horng, J. W. (2012). Analytical synthesis of general high-order voltage/current transfer functions using CCIIs. Microelectronics Journal, 43(8), 546–554.

    Google Scholar 

  19. Ranjan, A., Ghosh, M., & Paul, S. K. (2015). Third-order voltage-mode active-C band pass filter. International Journal of Electronics, 102(5), 781–791.

    Google Scholar 

  20. Svoboda, J. A. (1994). Transfer function synthesis using current conveyors. International Journal of Electronics, 76(4), 611–614.

    Google Scholar 

  21. Acar, C. (1996). Nth-order low-pass voltage transfer function synthesis using CCII+s: Signal-flow graph approach. Electronics Letters, 32(3), 159–160.

    Google Scholar 

  22. Acar, C. (1996). Nth-order allpass voltage transfer function synthesis using CCII+: Signal-flow graph approach. Electronics Letters, 32(8), 727–729.

    Google Scholar 

  23. Kilinc, S., & Cam, U. (2005). Realization of n-th order voltage transfer function using a single operational transresistance amplifier. ETRI Journal, 27(5), 647–650.

    Google Scholar 

  24. Ramola, V., Mishra, S., Singh, R. K., & Chauhan, D. S. (2012). CCCDBA based implementation of voltage mode third order filters. CNC 2012; LNICST, 108, 185–192.

  25. Gunes, E. O., & Anday, F. (1997). CFA based fully integrated nth-order low-pass filter. Electronics Letters, 33(7), 571–573.

    Google Scholar 

  26. Anday, F., & Sedef, H. (2000). Nth-order low-pass voltage transfer function synthesis using current feedback amplifiers. Frequenz, 54(9–10), 209–210.

    Google Scholar 

  27. Chang, C. M. & Al-Hashimi, B. M. (2003). Analytical synthesis of voltage mode OTA-C all-pass filters for high frequency operation. In Proceedings of the 2003 international symposium on circuits and systems, Bangkok, Thailand, 461–464.

  28. Chang, C., Soliman, A. M., & Swamy, M. N. S. (2007). Analytical synthesis of low-sensitivity high-order voltage-mode DDCC and FDCCII: Grounded R and C all-pass filter structures. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(7), 1430–1443.

    Google Scholar 

  29. Feki, N. B. E., Masmoudi, D. S., & Derbel, N. (2008). Nth order voltage mode low-pass filter using current conveyors. International Conference on Signals, Circuits and Systems, 8, 1–4.

    Google Scholar 

  30. Zhao, J., Jiang, J., & Liu, J. (2010). Design of tunable biquadratic filters employing CCCIIs: State variable block diagram approach. Analog Integrated Circuits and Signal Processing, 62, 397–406.

    Google Scholar 

  31. Tangsrirat, W., Onjan, O., & Pukkalanun, T. (2014). SFG synthesis of general nth-order all-pole voltage transfer functions using VDBAs and grounded capacitors. In The 4th joint international conference on information and communication technology, Electronic and Electrical Engineering (JICTEE), Chiang Rai, Thailand, 1–4.

  32. Onjan, O., Pukkalanun, T., & Tangsrirat, W. (2015). SFG realization of general nth-order allpass voltage transfer functions using VDBAs. In 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), Hua-Hin, Thailand, 1–6.

  33. Taskiran, Z. G. C., & Sedef, H. (2018). Voltage differencing gain amplifier-based nth-order low-pass voltage-mode filter. Journal of Circuits, Systems, and Computers, 27(6), 1850089.

    Google Scholar 

  34. Chang, C. M. (2005). Voltage-mode high-order OTA only without C low-pass (from 215 M to 705M Hz) and band-pass (from 214 M to 724M Hz) filter structure. IEEE international symposium on circuits and systems, Kobe, Japan, 6, 5950–5953.

    Google Scholar 

  35. Chang, C. M., Hou, C. L., Chung, W. Y., Horng, J. W., & Tu, C. K. (2006). Analytical synthesis of high-order single-ended-input OTA-grounded C all-pass and band-reject filter structures. IEEE transactions on circuits and systems-I, 53(3), 489–498.

    Google Scholar 

  36. Ranjan, A., & Paul, S. (2011). Nth order voltage mode active-c filter employing current controlled current conveyor. Circuits and Systems, 2(2), 85–90.

    Google Scholar 

  37. Chang, C. M., Al-Hashimi, B. M., Sun, Y., & Ross, J. N. (2004). New high-order filter structures using only single-ended-input OTAs and grounded capacitors. IEEE transactions on circuits and systems-II: Express briefs, 51(9), 458–463.

    Google Scholar 

  38. Ghosh, M., Paul, S. K., Ranjan, R. K., & Ranjan, A. (2013). Third order universal filter using single operational transresistance amplifier. Journal of Engineering, 2013, 317296.

    Google Scholar 

  39. Ranjan, A., Perumalla, S., & Kumar, R. (2017). Third order voltage mode universal filter using CCCII. Analog Integrated Circuits and Signal Processing, 90, 539–550.

    Google Scholar 

  40. Tarunkumar, H., Ranjan, A., & Perumalla, S. (2017). Four input single output based third order universal filter using four terminal floating nullor. Analog Integrated Circuits and Signal Processing, 93, 87–98.

    Google Scholar 

  41. Singh, D. & Paul, S. K. (2020). Voltage mode third-order universal filter using a single CCII. In 7th international conference on signal processing and integrated networks (SPIN), Noida, India, 160–165.

  42. Anday, F., & Gunes, E. O. (1992). Realization of nth-order transfer functions using current conveyors. International journal of circuit theory and applications, 20, 693–696.

    Google Scholar 

  43. Sun, Y., & Fidler, J. K. (1993). OTA-C realisation of general high-order transfer functions. Electronics Letters, 29(12), 1057–1058.

    Google Scholar 

  44. Gunes, E. O., & Anday, F. (1995). Realisation of nth-order voltage transfer function using CCII+. Electronics Letters, 31(13), 1022–1023.

    Google Scholar 

  45. Acar, C. (1996). Nth-order voltage transfer function synthesis using a commercially available active component: Signal-flow graph approach. Electronics Letters, 32(21), 1933–1934.

    Google Scholar 

  46. Barbargires, C. A. (1999). Explicit design of general high-order FLF OTA-C filters. Electronics Letters, 35(16), 1289–1290.

    Google Scholar 

  47. Acar, C., & Ozoguz, S. (2000). Nth-order voltage transfer function synthesis using a commercially available active component, CFA: Signal-flow graph approach. Frequenz, 54(5–6), 134–137.

    Google Scholar 

  48. Chang, C. M., Lee, C. N., Hou, C. L., Horng, J. W., & Tu, C. K. (2006). High-order DDCC-based general mixed-mode universal filter. IEE Proceedings: Circuits, Devices and Systems, 153(5), 511–516.

    Google Scholar 

  49. Chang, C. M., & Swamy, M. N. S. (2010). Analytical synthesis and comparison of voltage-mode Nth-order OTA-C universal filter structures. International journal of circuit theory and applications, 40(5), 421–454.

    Google Scholar 

  50. Onjan, O., Unhavanich, S., & Tangsrirat, W. (2016). SFG Actualization of General nth-Order Voltage Transfer Functions Using VDBAs. In Proceedings of the international multiconference of engineers and computer scientists IMECS 2016, March 16 - 18, Hong Kong, 2, 1–5.

  51. Chang, C. M., Swamy, M. N. S., & Soliman, A. M. (2015). Analytical synthesis of voltage-mode even/odd-nth-order differential difference current conveyor and fully differential current conveyor II-grounded resistor and capacitor universal filter structures. International journal of circuit theory and applications, 43, 1263–1310.

    Google Scholar 

  52. Wang, C., Zhang, J., Wang, L., Shi, W., & Jing, D. A. (2016). novel Nth-order voltage-mode universal filter based on CMOS CFOA. Optik, 127, 2226–2230.

    Google Scholar 

  53. Jeshvaghani, M. A., & Dolatshahi, M. (2014). A low-power multi-mode and multi-output high-order CMOS universal Gm-C filter. Analog Integrated Circuits and Signal Processing, 79, 95–104.

    Google Scholar 

  54. Sedra, A., & Smith, K. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.

    Google Scholar 

  55. Sackinger, E., & Guggenbuhl, W. (1970). A versatile building block: The CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits, 22(2), 287–294.

    Google Scholar 

  56. Chiu, W., & Horng, J. (2007). High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(8), 649–652.

    Google Scholar 

  57. Chen, H. P. (2009). Versatile universal voltage-mode filter employing DDCCs. AEU- International Journal of Electronics and Communications, 63(1), 78–82.

    Google Scholar 

  58. Horng, J. W., & Chiu, W. Y. (2011). High input impedance DDCC-based voltage-mode universal biquadratic filter with three inputs and five outputs. Indian Journal of Engineering and Materials Sciences, 18, 183–190.

    Google Scholar 

  59. Yuce, E. (2017). A single-input multiple-output voltage-mode second-order universal filter using only grounded passive components. Indian Journal of Engineering and Materials Sciences, 24, 97–106.

    Google Scholar 

  60. Unuk, T., & Yuce, E. (2021). Supplementary DDCC+based universal filter with grounded passive elements. AEU International Journal of Electronics and Communications, 132, 153652.

    Google Scholar 

  61. Kumngern, M., & Dejhan, K. (2009). DDCC-based quadrature oscillator with grounded capacitors and resistors. Active and Passive Electronic Components. https://doi.org/10.1155/2009/987304

    Article  Google Scholar 

  62. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2019). Design and implementation of DDCC-based fractional-order oscillator. International Journal of Electronics, 106(4), 581–598.

    Google Scholar 

  63. Ibrahim, M. A., Minaei, S., Yuce, E., Herencsar, N., & Koton, J. (2012). Lossy/Lossless Floating/Grounded Inductance Simulation Using One DDCC. Radioengineering, 21(1), 3–10.

    Google Scholar 

  64. Abaci, A., & Yuce, E. (2019). Single DDCC based new immittance function simulators employing only grounded passive elements and their applications. Microelectronics Journal, 83, 94–103.

    Google Scholar 

  65. Chiu, W., Liu, S. I., Tsao, H. W., & Chen, J. J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceedings - Circuits, Devices and Systems, 143(2), 91–96.

    MATH  Google Scholar 

  66. Chen, H. P. (2010). High-input impedance voltage-mode multifunction filter with four grounded components and only two plus-type DDCCs. Active and Passive Electronic Components. https://doi.org/10.1155/2010/362516

    Article  Google Scholar 

  67. Lee, C. N. (2017). Independently tunable plus-type DDCC-based voltage-mode universal biquad filter with MISO and SIMO types. Microelectronics Journal, 67, 71–81.

    Google Scholar 

  68. Minari, S., & Ibrahim, M. A. (2005). General configuration for realizing current-mode first-order all-pass filter using DVCC. Journal of Electronics (China), 92(6), 347–356.

    Google Scholar 

  69. Akerberg, D. (1970). Comparison of methods for active RC synthesis. Part H-Measurements and extended theory. Telecommunication Theory, Royal Inst. Technol., Stockholm, Sweden, Tech. Rep.

  70. Akerberg, D., & Mossberg, K. (1974). A versatile active RC building block with inherent compensation for the finite bandwidth of the amplifier. IEEE Transactions on Circuits and Systems, 21(1), 75–78.

    Google Scholar 

  71. Fabre, A., Saaid, O., & Barthelemy, H. (1995). On the frequency limitations of the circuits based on second generation current conveyors. Analog Integrated Circuits and Signal Processing, 7, 113–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal K. Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choubey, C.K., Paul, S.K. Nth order voltage-mode universal filter employing only plus type differential difference current conveyor. Analog Integr Circ Sig Process 110, 197–210 (2022). https://doi.org/10.1007/s10470-021-01967-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01967-z

Keywords

Navigation