Skip to main content
Log in

Grounded inductance simulator realization with single VDDDA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a grounded inductance simulator circuit employing single voltage differencing differential difference amplifier (VDDDA) and a grounded capacitor is proposed. The purpose of this paper is to present an inductance simulator using minimum number of active and passive components. Due to the use of grounded capacitor in the proposed inductance simulator, the circuit is suitable for analog integrated circuit implementations. The circuit does not require any conditions of component matching. Furthermore, the presented circuit has electronically tunability property through changing the biasing current of the VDDDA. Inductance value of the circuit is analyzed for different biasing current values and at various temperatures. Additionally, in order to analyze the performance of the inductance simulator circuit, it is used in a second-order multifunction filter and third-order high pass filter structures. Noise voltage, frequency response, time domain response and total harmonic distortion analyzes are simulated for the filters. The simulation results of the proposed inductance simulator and filter circuits are verified and demonstrated with LTSPICE by using 0.18 µm TSMC CMOS process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thanachayanont, A., & Payne, A. (2000). CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proceedings - Circuits, Devices and Systems, 147(1), 42. https://doi.org/10.1049/ip-cds:20000053

    Article  Google Scholar 

  2. Yuce, E., Minaei, S., & Cicekoglu, O. (2005). A novel grounded inductor realization using a minimum number of active and passive components. ETRI Journal, 27(4), 427–432. https://doi.org/10.4218/etrij.05.0104.0149

    Article  Google Scholar 

  3. Myderrizi, I., Minaei, S., & Yuce, E. (2011). DXCCII-based grounded inductance simulators and filter applications. Microelectronics Journal, 42(9), 1074–1081. https://doi.org/10.1016/j.mejo.2011.06.008

    Article  Google Scholar 

  4. Kaçar, F., & Yeşil, A. (2010). Novel grounded parallel inductance simulators realization using a minimum number of active and passive components. Microelectronics Journal, 41(10), 632–638. https://doi.org/10.1016/j.mejo.2010.06.011

    Article  Google Scholar 

  5. Metin, B. (2012). Canonical inductor simulators with grounded capacitors using DCCII. International Journal of Electronics, 99(7), 1027–1035. https://doi.org/10.1080/00207217.2011.639274

    Article  Google Scholar 

  6. Arslan, E., Metin, B., Herencsar, N., Koton, J., Morgul, A., & Cicekoglu, O. (2012). High performance wideband CMOS CCI and its application in inductance simulator design. Advances in Electrical and Computer Engineering, 12(3), 21–26. https://doi.org/10.4316/aece.2012.03003

    Article  Google Scholar 

  7. Kumar, P., & Senani, R. (2010). New grounded simulated inductance circuit using a single PFTFN. Analog Integrated Circuits and Signal Processing, 62(1), 105–112. https://doi.org/10.1007/s10470-009-9322-x

    Article  Google Scholar 

  8. Pandey, R., Pandey, N., Paul, S. K., Singh, A., Sriram, B., & Trivedi, K. (2014). Novel grounded inductance simulator using single OTRA. International Journal of Circuit Theory and Applications, 42(10), 1069–1079. https://doi.org/10.1002/cta.1905

    Article  Google Scholar 

  9. Ibrahim, M. A., Minaei, S., & Yuce, E. (2012). Lossy / Lossless Floating / grounded inductance simulation using one DDCC. Radioengineering, 21(1), 3–10.

    Google Scholar 

  10. Gupta, A., Senani, R., Bhaskar, D. R., & Singh, A. K. (2012). OTRA-based Grounded-FDNR and grounded-inductance simulators and their applications. Circuits, Systems, and Signal Processing, 31(2), 489–499. https://doi.org/10.1007/s00034-011-9345-2

    Article  MathSciNet  Google Scholar 

  11. Pal, K., & Nigam, M. J. (2008). Novel active impedances using current conveyors. Journal of Active & Passive Electronic Devices, 3(1), 29–34.

    Google Scholar 

  12. Yeşil, A., Kaçar, F., & Gürkan, K. (2014). Lossless grounded inductance simulator employing single VDBA and its experimental band-pass filter application. AEU - International Journal of Electronics and Communications, 68(2), 143–150. https://doi.org/10.1016/j.aeue.2013.07.016

    Article  Google Scholar 

  13. Kaçar, F., Yeşil, A., Minaei, S., & Kuntman, H. (2014). Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. AEU - International Journal of Electronics and Communications, 68(1), 73–78. https://doi.org/10.1016/j.aeue.2013.08.020

    Article  Google Scholar 

  14. Prasad, D., & Ahmad, J. (2014). New electronically-controllable lossless synthetic floating inductance circuit using single VDCC. Circuits and Systems, 05(01), 13–17. https://doi.org/10.4236/cs.2014.51003

    Article  Google Scholar 

  15. Bhaskar, D. R., Prasad, D., & Pushkar, K. L. (2013). Electronically-controllable grounded-capacitor-based grounded and floating inductance simulated circuits using VD-DIBAs. Circuits and Systems, 04(05), 422–430. https://doi.org/10.4236/cs.2013.45055

    Article  Google Scholar 

  16. Sagbas, M. (2011). Component reduced floating ±L, ±C and ±R simulators with grounded passive components. AEU - International Journal of Electronics and Communications, 65(10), 794–798. https://doi.org/10.1016/j.aeue.2011.01.006

    Article  Google Scholar 

  17. Tangsrirat, W. (2013). Floating simulator with a single DVCCTA. Indian Journal of Engineering and Materials Sciences, 20(2), 79–86.

    Google Scholar 

  18. Yuce, E. (2007). On the implementation of the floating simulators employing a single active device. AEU - International Journal of Electronics and Communications, 61(7), 453–458. https://doi.org/10.1016/j.aeue.2006.08.001

    Article  Google Scholar 

  19. Abaci, A., & Yuce, E. (2019). Single DDCC based new immittance function simulators employing only grounded passive elements and their applications. Microelectronics Journal, 83(2018), 94–103. https://doi.org/10.1016/j.mejo.2018.11.014

  20. Mohammad, F., Sampe, J., Shireen, S., Ali, H. M., & S. (2017). Minimum passive components based lossy and lossless inductor simulators employing a new active block. AEU - International Journal of Electronics and Communications, 82, 226–240. https://doi.org/10.1016/j.aeue.2017.08.046

    Article  Google Scholar 

  21. Yuce, E. (2008). Grounded inductor simulators with improved low-frequency performances. IEEE Transactions on Instrumentation and Measurement, 57(5), 1079–1084. https://doi.org/10.1109/TIM.2007.913822

    Article  Google Scholar 

  22. Yesil, A., Yuce, E., & Minaei, S. (2018). Inverting voltage buffer based lossless grounded inductor simulators. AEU - International Journal of Electronics and Communications, 83, 131–137. https://doi.org/10.1016/j.aeue.2017.08.026

    Article  Google Scholar 

  23. Faseehuddin, M., Sampe, J., Shireen, S., & Ali, S. H. M. (2018). Lossy and lossless inductance simulators and universal filters employing a new versatile active block. Informacije MIDEM, 48(2), 97–113.

    Google Scholar 

  24. Herencsar, N., Koton, J., & Vrba, K. (2010). CFTA-Based Active-C grounded positive inductance simulator and its application. Elektrorevue, 1(1), 24–27.

    Google Scholar 

  25. Prasad, D., Bhaskar, D. R., & Pushkar, K. L. (2011). Realization of new electronically controllable grounded and floating simulated inductance circuits using voltage differencing differential input buffered amplifiers. Active and Passive Electronic Components, 2011, 1–8. https://doi.org/10.1155/2011/101432

    Article  Google Scholar 

  26. Prasad, D., Bhaskar, D. R., & Singh, A. K. (2010). New grounded and floating simulated inductance circuits using current differencing transconductance amplifiers. Radioengineering, 19(1), 194–198.

    Google Scholar 

  27. Singh, A. K., Kumar, P., & Senani, R. (2018). Electronically tunable grounded/floating inductance simulators using Z-copy CFCCC. Turkish Journal of Electrical Engineering & Computer Sciences, 26(2), 1041–1055. https://doi.org/10.3906/elk-1703-230

    Article  Google Scholar 

  28. Prasad, D., & Bhaskar, D. R. (2012). Grounded and Floating Inductance Simulation Circuits Using VDTAs. Circuits and Systems, 03(04), 342–347. https://doi.org/10.4236/cs.2012.34048

    Article  Google Scholar 

  29. Srivastava, M., & Prasad, D. (2017). Minimum component, electronically tunable simulator for grounded inductor with low parasitic effects. Journal of Telecommunication, Electronic and Computer Engineering, 9(2), 41–46.

    Google Scholar 

  30. Siripruchyanun, M., & Jaikla, W. (2008). Current controlled current conveyor transconductance amplifier (CCCCTA): A building block for analog signal processing. Electrical Engineering, 90(6), 443–453. https://doi.org/10.1007/s00202-007-0095-x

    Article  Google Scholar 

  31. Guney, A., & Kuntman, H. (2014). New floating inductance simulator employing a single ZC-VDTA and one grounded capacitor. In 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS) (pp. 1–2). IEEE. https://doi.org/10.1109/DTIS.2014.6850643

  32. Jaikla, W., Sotner, R., & Khateb, F. (2019). Design and analysis of floating inductance simulators using VDDDAs and their applications. AEU - International Journal of Electronics and Communications, 112, 152937. https://doi.org/10.1016/j.aeue.2019.152937

    Article  Google Scholar 

  33. Konal, M., & Kacar, F. (2017). MOS only grounded active inductor circuits and their filter applications. Journal of Circuits, Systems and Computers, 26(06), 1750098. https://doi.org/10.1142/S0218126617500980

    Article  Google Scholar 

  34. Konal, M., Yesil, A., & Kacar, F. (2019). Realization of grounded active inductor circuit with only MOSFETs. Journal of Nanoelectronics and Optoelectronics, 14(8), 1078–1082. https://doi.org/10.1166/jno.2019.2620

    Article  Google Scholar 

  35. Senani, R., Bhaskar, D. R., Singh, V. K., & Singh, A. K. (2020). Gyrators, Simulated Inductors and Related Immittances: Realizations and Applications. Institution of Engineering and Technology. https://doi.org/10.1049/PBCS048E

  36. Herencsar, N., Sotner, R., Metin, B., Koton, J., & Vrba, K. (2013). VDDDA - New “voltage differencing” device for analog signal processing. In 2013 8th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 17–20). IEEE. https://doi.org/10.1109/ELECO.2013.6713927

  37. Koton, J., Herencsar, N., Vrba, K., & Metin, B. (2013). The VDDDA in multifunction filter with mutually independent Q and ω0 control feature. In 2013 8th International Conference on Electrical and Electronics Engineering (ELECO) (Vol. 81, pp. 53–56). IEEE. https://doi.org/10.1109/ELECO.2013.6713935

  38. Sangyaem, S., Siripongdee, S., Jaikla, W., & Khateb, F. (2017). Five-inputs single-output voltage mode universal filter with high input and low output impedance using VDDDAs. Optik, 128, 14–25. https://doi.org/10.1016/j.ijleo.2016.09.113

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Konal.

Ethics declarations

Conflicts of interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konal, M., Kacar, F. Grounded inductance simulator realization with single VDDDA. Analog Integr Circ Sig Process 110, 279–288 (2022). https://doi.org/10.1007/s10470-021-01957-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01957-1

Keywords

Navigation