Skip to main content
Log in

Dual mode, high frequency and power efficient grounded memristor based on OTA and DVCC

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a robust design of a dual mode grounded memristor using single output operational transconductance amplifier (OTA) and differential voltage current conveyor (DVCC) has been reported. The reported memristor emulator design features a 50 mV operating voltage and a 1 MHz operating frequency, making it most appropriate for low-power and high-frequency applications. The presented memristor emulator design employs Cadence Virtuoso 0.18 µm CMOS technology, our reported emulator is validated by both theoretical and simulation results. By adjusting the DVCC's input voltage, the emulator can be set to work in both incremental and decremental mode. The proposed memristor has demonstrated improved performance in terms of band-width and tunability after sensitivity study of various parameters variability such as process variation, capacitor, and frequency variation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chua, L. O. (1971). Memristor—The missing circuit element. IEEE Transaction on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Strukov, D. B., Stewart, G. S., & Williams, R. S. (2008). The missing memristor found. Nature Letters, 453, 80–83.

    Article  Google Scholar 

  3. Wang, X., & Chen, Y. (2010). Spintronic memristor device and application. In Proceedings of design, automation and text in Europe conference and exhibition (pp. 667–674).

  4. Valov, I., & Kozicki, M. (2017). Organic memristors come of age. Nature Materials, 16, 1170–1172.

  5. Chanthbouala, A., Garcia, V., Cherifi, R. O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N. D., Bibes, M., Barthelemy, A., & Grollier, J. (2012). A ferroelectric memristor. Nature Materials, 11, 86–864.

    Article  Google Scholar 

  6. Elwakil, A. S., Fouda, M. E., & Radwan, A. G. (2013). a simple model of double loop hysteresis behavior in memristive elements. IEEE Transaction on Circuits System II, 60(8), 487–491.

    Article  Google Scholar 

  7. Pershin, Y. V., & Di Ventra, M. (2012). Neuromorphic, digital and quantum computation with memory circuit elements. Proceedings of the IEEE, 100(6), 2071–2080.

    Article  Google Scholar 

  8. Sung, H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010). Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 10(4), 1297–1301.

  9. Shin, S., Kim, K., & Kang, S. M. (2010). Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 10(2), 266–274.

    Article  Google Scholar 

  10. Wang, F. Z., et al. (2013). Adaptive neuromorphic architecture (ANA). Neural Networks, 45, 111–116.

    Article  Google Scholar 

  11. Yesil, A., Babacan, Y., & Kacar, F. (2018). Design and experimental evolution of memristor with only one VDTA and one capacitor. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 99, 1–9.

    Google Scholar 

  12. Hussein, A., & Fouda, M. E. (2013). A simple MOS realization of current controlled memristor emulator. In IEEE 2013 25th international conference on microelectronics (ICM) (pp. 1–4).

  13. Pal, I., Kumar, V., Aishwarya, N., Nayak, A., & Islam, A. (2019). A VDTA-based robust electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 1–13.

  14. Babacan, Y., Yesil, A., & Kacar, F. (2017). Memristor emulator with tunable characteristic and its experimental results. AEU-International Journal of Electronics and Communications, 81, 99–104.

    Article  Google Scholar 

  15. Ibrayev, T., Fedorova, I., Maan, A. K., & James, A. P. (2014). Memristive operational amplifiers. Procedia Computer Science, 41, 114–119.

    Article  Google Scholar 

  16. Cheng, K. T. T., & Strukov, D. B. (2012). 3D CMOS-memristor hybrid circuits: Devices, integration, architecture, and applications. In Proceedings of the 2012 ACM international symposium on international symposium on physical design (pp. 33–40).

  17. Cong, J., & Xiao, B. (2011). A novel FPGA architecture with memristor-based reconfiguration. In 2011 IEEE/ACM international symposium on nanoscale architectures (pp. 1–8).

  18. Ranjan, R. K., Sharma, P. K., Sagar, N., Kumari, R. B., & Khateb, F. (2019). Memristor emulator circuit using multiple-output OTA and Its experimental results. Journal of Circuits, Systems and Computers, 28(10), 1950166.

  19. Yesil, A. (2019). Floating memristor employing single MO-OTA with hard-switching behaviour. Journal of Circuits, Systems and Computers, 28(02), 1950026.

    Article  Google Scholar 

  20. Lee, S. Y., Wang, C. P., & Chu, Y. S. (2018). Low-voltage OTA–C filter with an area-and power-efficient OTA for biosignal sensor applications. IEEE transactions on biomedical circuits and systems, 13(1), 56–67.

    Article  Google Scholar 

  21. Cini, U., & Toker, A. (2017). DVCC-based very low-offset current-mode instrumentation amplifier. International Journal of Electronics, 104(8), 1346–1357.

    Article  Google Scholar 

  22. Yesil, A., Babacan, Y., & Kacar, F. (2020). An electronically controllable, fully floating memristor based on active elements: DO-OTA and DVCC. AEU-International Journal of Electronics and Communications, 153315.

  23. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2020). Active realization of fractional order Butterworth lowpass filter using DVCC. Journal of King Saud University-Engineering Sciences, 32(2), 158–165.

    Article  Google Scholar 

  24. Yesil, A., Babacan, Y., & Kacar, F. (2019). “Electronically tunable memristor based on VDCC. AEU-International Journal of Electronics and Communications, 107, 282–290.

    Article  Google Scholar 

  25. Davis, W. R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A. M., & Steer, M. (2005). Demystifying 3D ICs: the pros and cons of going vertical. In IEEE design & test of computers (Vol. 22, no. 6, pp. 498–510). doi: https://doi.org/10.1109/MDT.2005.136.

  26. Dongaonkar, S., Mudanai, S. P., & Giles, M. D. (2018). From process corners to statistical circuit design methodology: Opportunities and challenges. IEEE Transactions on Electron Devices, 66(1), 19–27.

    Article  Google Scholar 

  27. Cao, P., Bao, W., & Guo, J. (2020). An accurate and efficient timing prediction framework for wide supply voltage design based on learning method. Electronics, 9(4), 580.

  28. Kumar, R., & Kursun, V. (2006). Impact of temperature fluctuations on circuit characteristics in 180nm and 65nm CMOS technologies. In IEEE international symposium on circuits and systems (pp. 1–5).

  29. Rasekh, A., & Bakhtiar, M. S. (2017). Design of low-power low-area tunable active RC filters. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(1), 6–10.

    Article  Google Scholar 

  30. Compassi-Severo, L., & Van Noije, W. (2019). A 0.4-V 10.9-µ W/pole third order complex BPF for low energy RF receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(6), 2017–2026.

  31. Lee, S. Y., Wang, C. P., & Chu, Y. S. (2018). Low-voltage OTA-C filter with an area-and power-efficient OTA for biosignal sensor applications. IEEE Transactions on Biomedical Circuits and Systems, 13(1), 56–67.

    Article  Google Scholar 

  32. Ranjan, R. K., Sagar, S., Roushan, S., Kumari, B., Rani, N., & Khateb, F. (2019). High-frequency floating memristor emulator and its experimental results. IET Circuits, Devices and Systems, 13(3), 292–302.

    Article  Google Scholar 

  33. Xie, X., Zou, L., Wen, S., Zeng, Z., & Huang, T. (2019). A flux-controlled logarithmic memristor model and emulator. Circuits, Systems, and Signal Processing, 38(4), 1452–1465.

    Article  Google Scholar 

  34. Sánchez-López, C., & Aguila-Cuapio, L. E. (2017). A 860 kHz grounded memristor emulator circuit. AEU-International Journal of Electronic and Communications, 73, 23–33.

    Article  Google Scholar 

  35. Ayten, U. E., Minaei, S., & Sağbaş, M. (2017). Memristor emulator circuits using single CBTA. AEU-International Journal of Electronics and Communications, 82, 109–118.

    Article  Google Scholar 

  36. Yadav, N., Rai, S. K., & Pandey, R. (2020). New grounded and floating memristor emulators using OTA and CDBA. International Journal of Circuit Theory and Applications .

  37. Petrović, P. B. (2018). Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integrated Circuits and Signal Processing, 96(3), 417–433.

    Article  Google Scholar 

  38. Ranjan, R. K., Raj, N., Bhuwal, N., & Khateb, F. (2017). Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU-International Journal of Electronics and Communications, 82, 177–190.

    Article  Google Scholar 

  39. Yu, D., Zheng, C., Iu, H. H. C., Fernando, T., & Chua, L. O. (2017). A new circuit for emulating memristors using inductive coupling. IEEE Access, 5, 1284–1295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Singh, S. & Kumar, P. Dual mode, high frequency and power efficient grounded memristor based on OTA and DVCC. Analog Integr Circ Sig Process 110, 81–89 (2022). https://doi.org/10.1007/s10470-021-01949-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01949-1

Keywords

Navigation