Skip to main content
Log in

A novel microstrip antenna loaded with EBG and ELC for bandwidth enhancement

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes the design of three compact antennas for WiMAX, WLAN and ISM band applications. Antenna 1 consists of a monopole radiating element with an electromagnetic band gap (EBG) structured ground. By employing the EBG structure, an ultra-wide band frequency of 2.4–4.8 GHz (66.66%) is achieved. Antenna 2 is configured with an electric-LC (ELC) element, which achieved an ultra-wide band (UWB) frequency of 2.38–4.91 GHz (69.41%). Antenna 3 is integrated with ELC and EBG together, in which a UWB frequency of 2.3–5.3 GHz (78.94%) is obtained with improved impedance matching. The three antennas have omnidirectional radiation patterns which cover the ISM band at 2.4 GHz and WiMAX at 2.5/3.5 GHz over the operating bands. The radiation efficiency is > 75% throughout the operating bands of all the antennas. In addition to the WiMAX and ISM bands, antenna 3 covers WLAN in the 5.2 GHz band. The proposed design can be applied to wireless mobile communication systems, which have the advantage of ease of fabrication and compactness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chang, T. N., & Jiang, J. H. (2009). Meandered T-shaped monopole antenna. IEEE Transactions on Antennas and Propagation, 57(12), 3976–3978.

    Article  Google Scholar 

  2. Coccioli, R., Yang, F.-R., Ma, K.-P., & Itoh, T. (1999). Aperture-coupled patch antenna on UC-PBG substrate. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2123–2130.

    Article  Google Scholar 

  3. Bae, H. R., So, S. O., Cho, C. S., Lee, J. W., & Kim, J. (2009). A crooked U-slot dual-band antenna with radial stub feeding. IEEE Antennas and Wireless Propagation Letters, 8, 1345–1348.

    Article  Google Scholar 

  4. Abedin, M. F., Azad, M. Z., & Ali, M. (2008). Wideband smaller unit-cell planar EBG structures and their application. IEEE Transactions on Antennas and Propagation, 56(3), 903–908.

    Article  Google Scholar 

  5. Yadav, R., & Patel, P. N. (2017). EBG-inspired reconfigurable patch antenna for frequency diversity application. AEU-International Journal of Electronics and Communications, 76, 52–59.

    Article  Google Scholar 

  6. Wang, X., Zhang, M., & Wang, S.-J. (2011). Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array. Progress in Electromagnetics Research, 115, 495–507.

    Article  Google Scholar 

  7. Zhu, J., Antoniades, M. A., & Eleftheriades, G. V. (2010). A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Transactions on Antennas and Propagation, 58(4), 1031–1038.

    Article  Google Scholar 

  8. Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 51(10), 2936–2946.

    Article  Google Scholar 

  9. Kumar, G., Singh, D., & Kumar, R. (2021). A planar CPW fed UWB antenna with dual rectangular notch band characteristics incorporating U‐slot, SRRs, and EBGs. International Journal of RF and Microwave Computer‐Aided Engineering e22676.

  10. Qu, D., Shafai, L., & Foroozesh, A. (2006). Improving microstrip patch antenna performance using EBG substrates. IEE Proceedings-Microwaves, Antennas and Propagation, 153(6), 558–563.

    Article  Google Scholar 

  11. Elsheakh, D. N., Elsadek, H. A., Abdallah, E. A., Elhenawy, H., & Iskander, M. F. (2009). Enhancement of microstrip monopole antenna bandwidth by using EBG structures. IEEE Antennas and Wireless Propagation Letters, 8, 959–962.

    Article  Google Scholar 

  12. Chen, H. N., Song, J.-M., & Park, J.-D. (2019). A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-Gap surface for 5G applications. IEEE Access, 7, 140889–140898.

    Article  Google Scholar 

  13. Abdulhameed, M. K., Mohamad Isa, M. S., Zakaria, Z., Ibrahim, I. M., Mohsen, M. K., Dinar, A. M., & Attiah, M. L. (2019). Novel design of triple-band EBG. Telkomnika, 17(4), 1683–1691.

    Article  Google Scholar 

  14. Ghahremani, M., et al. (2019). Miniaturised UWB antenna with dual-band rejection of WLAN/WiMAX using slitted EBG structure. IET Microwaves, Antennas & Propagation, 13(3), 360–366.

    Article  Google Scholar 

  15. Naderi, M., Zarrabi, F. B., Jafari, F. S., & Ebrahimi, S. (2018). Fractal EBG structure for shielding and reducing the mutual coupling in microstrip patch antenna array. AEU-International Journal of Electronics and Communications, 93, 261–267.

    Article  Google Scholar 

  16. Margaret, D. H., & Manimegalai, B. (2018). Modeling and optimization of EBG structure using response surface methodology for antenna applications. AEU-International Journal of Electronics and Communications, 89, 34–41.

    Article  Google Scholar 

  17. Tadesse, A. D., Acharya, O. P., & Sahu, S. (2020). Application of metamaterials for performance enhancement of planar antennas: A review. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22154.

  18. Ameen, M., & Chaudhary, R. K. (2020) Dual-layer and dual-polarized metamaterial inspired antenna using circular-complementary split ring resonator mushroom and metasurface for wireless applications. AEU-International Journal of Electronics and Communications,, 113, 152977.

  19. Swetha, A., & Rama Naidu, K. (2021). Miniaturised planar antenna with enhanced gain characteristics for 5.2 GHz WLAN application. International Journal of Electronics 1–18.

  20. Reddy, M. H., Sheela, D., Parbot, V., et al. (2021). A compact metamaterial inspired UWB-MIMO fractal antenna with reduced mutual coupling. Microsystem Technologies, 27, 1971–1983. https://doi.org/10.1007/s00542-020-05024-z

    Article  Google Scholar 

  21. Anand, S., & Prashalee, P. (2021). High gain compact multiband cavity-backed SIW and metamaterial unit cells with CPW feed antenna for S, and K u band applications. Wireless Personal Communications, 118(2), 1621–1634.

    Article  Google Scholar 

  22. Thakur, B., & Kunte, A. (2018). Improved design of CELC meta-resonators for bandwidth improvement and miniaturization of patch antenna. Applied Physics A, 124(12), 1–8.

    Article  Google Scholar 

  23. Mishra, N., & Chaudhary, R. K. (2019). A miniaturised directive high gain metamaterial antenna using ELC ground for WiMAX application. International Journal of Electronics Letters, 7(1), 68–76.

    Article  Google Scholar 

  24. Daniel, R. S., Pandeeswari, R., & Raghavan, S. (2018). Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications. Applied Physics A, 124(8), 1–7.

    Article  Google Scholar 

  25. Daniel, R. S. (2020) Broadband µ-negative antenna using ELC unit cell. AEU-International Journal of Electronics and Communications, 118, 153147.

  26. Rajabloo, H., Kooshki, V. A., & Oraizi, H. (2017). Compact microstrip fractal Koch slot antenna with ELC coupling load for triple band application. AEU-International Journal of Electronics and Communications, 73, 144–149.

    Article  Google Scholar 

  27. Boopathi Rani, R., & Pandey, S. K. (2017). ELC metamaterial based CPW-fed printed dual-band antenna. Microwave and Optical Technology Letters, 59(2), 304–307.

    Article  Google Scholar 

  28. Babu, K. V., & Anuradha, B. (2019). Design of Wang shape neutralization line antenna to reduce the mutual coupling in MIMO antennas. Analog Integrated Circuits and Signal Processing, 101(1), 67–76.

    Article  Google Scholar 

  29. Elhabchi, M., Srifi, M. N., & Touahni, R. (2020). A novel modified U-shaped microstrip antenna for super wide band (SWB) applications. Analog Integrated Circuits and Signal Processing, 102(3), 571–578.

    Article  Google Scholar 

  30. Zaker, R., Abdipour, A., & Tavakoli, A. (2014). Full-wave simulation, design and implementation of a new combination of antenna array feed network integrated in low profile microstrip technology. Analog Integrated Circuits and Signal Processing, 80(3), 507–517.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mekala Harinath Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.H., Sheela, D., Sharma, A. et al. A novel microstrip antenna loaded with EBG and ELC for bandwidth enhancement. Analog Integr Circ Sig Process 109, 115–126 (2021). https://doi.org/10.1007/s10470-021-01935-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01935-7

Keywords

Navigation