Skip to main content

Memristor–CMOS hybrid ultra-low-power high-speed multivibrators

Abstract

Memristor–CMOS (MCM) technology enables fabrication of thin film memristors over the conventional CMOS devices and has the potential to significantly reduce the silicon-area and propagation delays in VLSI chips. The memristor not only has an extremely very useful characteristic of non-volatile memory, but also has the advantage of significantly lesser ON resistance \(R_{on}\) and lesser undesired parasitic capacitance as compared to MOSFETs. Innovative MCM hybrid re-configurable circuits can outperform conventional CMOS-only design and hence are being considered as an important device for future digital VLSI applications. This paper presents applications of \({\mathrm{TiO}}_{2-x}\)\({\mathrm{TiO}}_{2}\) memristor for digital multivibrator circuits at 45 nm CMOS technology node. The threshold adaptive memristor SPICE model has been used for design and performance-benchmarking of the proposed MCM multivibrators in circuit simulator (cadence®) at 45 nm technology node. The proposed new MCM mono-stable vibrator has a delay of merely 16 ps (98% lower delay than similar CMOS design) and requires a 45% lesser silicon area. Similarly, the proposed new MCM bi-stable vibrator has a delay of merely 5 ps (87% lower delay than similar CMOS design) and requires a 25% lesser silicon area. Moreover, the proposed MCM mono-stable and bi-stable multivibrators consume merely 0.1 \(\upmu\)W and 0.5 \(\upmu\)W of power, respectively, as compared to the 0.47 \(\upmu\)W and 0.98 \(\upmu\)W power required by corresponding CMOS-only multi-vibrators. The overall decrease in power delay product is 99% and 94%, respectively, in the proposed MCM mono-stable and bi-stable multivibrators as compared to the corresponding conventional CMOS-only multivibrators.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Chua, L. (1971). Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507.

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  3. Belov, A. N., Golishnikov, A. A., Mastinin, A. M., Perevalov, A. A., & Shevyakov, V. I. (2019). Study of the formation process of memristor structures based on copper sulfide. Semiconductors, 53(15), 2024. https://doi.org/10.1134/S1063782619150041

    Article  Google Scholar 

  4. Tikhov, S. V., Gorshkov, O. N., Antonov, I. N., Tetelbaum, D. I., Mikhaylov, A. N., Belov, A. I., Morozov, A. I., Karakolis, P., & Dimitrakis, P. (2018). Behavioral features of MIS memristors with a Si3N4 nanolayer fabricated on a conductive Si substrate. Semiconductors, 52(12), 1540. https://doi.org/10.1134/S1063782618120242

    Article  Google Scholar 

  5. Kalygina, V. M., Egorova, I. M., Prudaev, I. A., & Tolbanov, O. P. (2016). Conduction in titanium dioxide films and metal–TiOs–Si structures. Semiconductors, 50(8), 1015. https://doi.org/10.1134/S1063782616080133

    Article  Google Scholar 

  6. Umnyagin, G. M., Degtyarov, V. E., & Obolenskiy, S. V. (2019). Numerical simulation of the current–voltage characteristics of bilayer resistive memory based on non-stoichiometric metal oxides. Semiconductors, 53(9), 1246. https://doi.org/10.1134/S1063782619090252

    Article  Google Scholar 

  7. Smirnov, V. A., Tominov, R. V., Avilov, V. I., Alyabieva, N. I., Vakulov, Z. E., Zamburg, E. G., Khakhulin, D. A., & Ageev, O. A. (2019). Investigation into the memristor effect in nanocrystalline ZnO films. Semiconductors, 53(1), 72. https://doi.org/10.1134/S1063782619010202

    Article  Google Scholar 

  8. Avilov, V. I., Ageev, O. A., Kolomiitsev, A. S., Konoplev, B. G., Smirnov, V. A., & Tsukanova, O. G. (2014). Formation of a memristor matrix based on titanium oxide and investigation by probe-nanotechnology methods. Semiconductors, 48(13), 1757. https://doi.org/10.1134/S1063782614130028

    Article  Google Scholar 

  9. Caka, N., Zabeli, M., Limani, M., & Kabashi, Q. (2007). Impact of MOSFET parameters on its parasitic capacitances. In Proceedings of 6th WSEAS International conference on electronics, hardware, wireless and optical communications, Stevens Point, Wisconsin.

  10. Wei, L., Boeuf, F., Skotnicki, T., & Wong, H. P. (2011). Parasitic capacitances: Analytical models and impact on circuit-level performance. IEEE Transactions on Electron Devices, 58(5), 1361.

    Article  Google Scholar 

  11. Lin, J.-T., Kuo, C.-H., Lee, T.-Y., Eng, Y.-C., Chang, T.-F., Lin, P.-H., Chen, H.-H., Sun, C.-H., & Chiu, H.-N. (2009). Improving reliability and diminishing parasitic capacitance effects in a vertical transistor with embedded gate. In 2009 16th IEEE International symposium on the physical and failure analysis of integrated circuits (pp. 75–78).

  12. Cong, J., & Xiao, B. (2011). mrFPGA: A novel FPGA architecture with memristor-based reconfiguration. In 2011 IEEE/ACM International symposium on nanoscale architectures (pp. 1–8).

  13. Strukov, D., & Williams, S. (2009). Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proceedings of the National Academy of Sciences of the United States of America, 106, 20155. https://doi.org/10.1073/pnas.0906949106

    Article  Google Scholar 

  14. Cheng, K. T. T., & Strukov, D. (2012). 3D CMOS–memristor hybrid circuits: Devices, integration, architecture, and applications. In Proceedings of the international symposium on physical design. https://doi.org/10.1145/2160916.2160925

  15. Khalid, M., Mukhtar, S., Siddique, M. J., & Ahmed, S. F. (2019). Memristor based full adder circuit for better performance. Transactions on Electrical and Electronic Materials, 20(5), 403. https://doi.org/10.1007/s42341-019-00135-5

    Article  Google Scholar 

  16. Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., & Williams, R. S. (2010). ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 464(7290), 873. https://doi.org/10.1038/nature08940

    Article  Google Scholar 

  17. Shin, S., Kim, K., & Kang, S. (2011). Reconfigurable stateful nor gate for large-scale logic-array integrations. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(7), 442.

    Article  Google Scholar 

  18. Gao, L., Alibart, F., & Strukov, D. B. (2013). Programmable CMOS/memristor threshold logic. IEEE Transactions on Nanotechnology, 12(2), 115.

    Article  Google Scholar 

  19. Shin, S., Kim, K., & Kang, S. M. (2013). Resistive computing: Memristors-enabled signal multiplication. IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 1241. https://doi.org/10.1109/TCSI.2013.2244434

    MathSciNet  Article  MATH  Google Scholar 

  20. Kim, K., Shin, S., & Kang, S. (2011). Field programmable stateful logic array. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(12), 1800.

    MathSciNet  Article  Google Scholar 

  21. Rose, G. S., Rajendran, J., Manem, H., Karri, R., & Pino, R. E. (2012). Leveraging memristive systems in the construction of digital logic circuits. Proceedings of the IEEE, 100(6), 2033.

    Article  Google Scholar 

  22. Medeiros-Ribeiro, G., Nickel, J. H., & Yang, J. J. (2011). Progress in CMOS–memristor integration. In 2011 IEEE/ACM International conference on computer-aided design (ICCAD) (pp. 246–249).

  23. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Weiser, U. C., & Friedman, E. G. (2012). MRL—Memristor ratioed logic. In 2012 13th International workshop on cellular nanoscale networks and their applications (pp. 1–6).

  24. Pershin, Y. V., & Ventra, M. D. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23(7), 881. https://doi.org/10.1016/j.neunet.2010.05.001

    Article  Google Scholar 

  25. Hong, D., Xiong, Z., & Yang, C. (2018). Analysis of adaptive synchronization for stochastic neutral-type memristive neural networks with mixed time-varying delays. Discrete Dynamics in Nature and Society, 2018, 1. https://doi.org/10.1155/2018/8126127

    Article  MATH  Google Scholar 

  26. Wang, L., Shen, Y., Yin, Q., & Zhang, G. (2015). Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Transactions on Neural Networks and Learning Systems, 26(9), 2033.

    MathSciNet  Article  Google Scholar 

  27. Ebong, I. E., & Mazumder, P. (2012). CMOS and memristor-based neural network design for position detection. Proceedings of the IEEE, 100(6), 2050.

    Article  Google Scholar 

  28. Buscarino, A., Fortuna, L., Frasca, M., & Valentina Gambuzza, L. (2012). A chaotic circuit based on Hewlett–Packard memristor. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(2), 023136. https://doi.org/10.1063/1.4729135

    MathSciNet  Article  MATH  Google Scholar 

  29. Sun, J., Shen, Y., Yin, Q., & Xu, C. (2013). Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(1), 013140. https://doi.org/10.1063/1.4794794

    MathSciNet  Article  MATH  Google Scholar 

  30. Sarwar, S. S., Saqueb, S. A. N., Quaiyum, F., & Rashid, A. B. M. H. (2013). Memristor-based nonvolatile random access memory: Hybrid architecture for low power compact memory design. IEEE Access, 1, 29.

    Article  Google Scholar 

  31. Biolek, Z., Biolek, D., & Biolková, V. (2009). SPICE model of memristor with nonlinear Dopant drift. Radioengineering, 18(2), 210–214.

  32. Kvatinsky, S., Talisveyberg, K., Fliter, D., Kolodny, A., Weiser, U. C., & Friedman, E. G. (2012). Models of memristors for SPICE simulations. In 2012 IEEE 27th Convention of electrical and electronics engineers in Israel (pp. 1–5).

  33. Jan, M., Rabaey, A. C., & Nikolic, B. (2016). Digital integrated circuits: A design perspective (2nd ed.). Pearson Education India.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Vidhyadharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vidhyadharan, A.S., Vidhyadharan, S. Memristor–CMOS hybrid ultra-low-power high-speed multivibrators. Analog Integr Circ Sig Process 110, 47–53 (2022). https://doi.org/10.1007/s10470-021-01856-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01856-5

Keywords

  • Memristor
  • MCM technology
  • Multivibrators
  • Threshold adaptive memristor SPICE model