Skip to main content

A CMOS closed-loop miniaturized wireless power transfer system for brain implant applications

Abstract

Near-field inductively coupled wireless power transfer (WPT) system has been extensively utilized for brain implant applications. Still, the efficient and reliable delivery of power is challenging as the received power varies due to different variabilities between the transmitter (TX) and the receiver (RX) coils. A closed-loop adaptive control system utilizing load shift keying, designed in the 0.5 µm standard CMOS process for providing the required power to the implant load compensating for these discrepancies is proposed in this paper. Both the proposed TX and the RX coils are fabricated using FR4 substrate having the dimensions of 10 × 10 mm and 5 × 5 mm, respectively. By changing the supply voltage of the power amplifier, this adaptive closed-loop system regulates the transmitted power to deliver 5.83 mW of power to the load, which is the approximate mid-point of the threshold window. The system achieves power transfer efficiencies of 9% and 8% at 8 mm distance through the air and the tissue media, respectively. Preliminary results show that the miniaturized WPT module with the feedback-loop achieves 8% and 3% of efficiency improvement for 8 mm distance between the TX and the RX coils, compared to the open-loop counterparts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Yeh, A. J., Ho, J. S., Tanabe, Y., Neofytou, E., Beygui, R. E., & Poon, A. S. (2013). Wirelessly powering miniature implants for optogenetic stimulation. Applied Physics Letters, 103(16), 163701.

    Article  Google Scholar 

  2. Akin, T., Najafi, K., & Bradley, R. M. (1998). A wireless implantable multi-channel digital neural recording system for a micromachined sieve electrode. IEEE Journal of Solid-State Circuits, 33(1), 109–118.

    Article  Google Scholar 

  3. Chen, K., Yang, Z., Hoang, L., Weiland, J., Humayun, M., & Liu, W. (2010). An integrated 256-channel epiretinal prosthesis. IEEE Journal of Solid-State Circuits, 45(9), 1946–1956.

    Article  Google Scholar 

  4. Li, X., Tsui, C.-Y., & Ki, W.-H. (2015). A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE Journal of Solid-State Circuits, 50(4), 978–989.

    Article  Google Scholar 

  5. Park, S. I., Brenner, D. S., Shin, G., Morgan, C. D., Copits, B. A., Chung, H. U., et al. (2015). Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology, 33(12), 1280.

    Article  Google Scholar 

  6. Lee, J., & Nam, S. (2010). Fundamental aspects of near-field coupling small antennas for wireless power transfer. IEEE Transactions on Antennas and Propagation, 58(11), 3442–3449.

    Article  Google Scholar 

  7. Pan, J., Abidi, A. A., Rozgić, D., Chandrakumar, H., & Marković, D. (2017). 22.7 an inductively-coupled wireless power-transfer system that is immune to distance and load variations. In 2017 IEEE International Solid-State Circuits Conference (ISSCC). IEEE (pp. 382–383).

  8. Lee, B., Kiani, M., & Ghovanloo, M. (2016). A triple-loop inductive power transmission system for biomedical applications. IEEE Transactions on Biomedical Circuits and Systems, 10(1), 138–148.

    Article  Google Scholar 

  9. Huang, C., Kawajiri, T., & Ishikuro, H. (2018). A 13.56 MHz wireless power transfer system with enhanced load-transient response and efficiency by fully integrated wireless constant-idle-time control for biomedical implants. IEEE Journal of Solid-State Circuits, 53(2), 538–551.

    Article  Google Scholar 

  10. Tasneem, N.T., Biswas, D.K., & Mahbub, I. (2019). Closed-loop adaptive transcutaneous wireless power transfer system for implantable sensors. In 2019 IEEE radio and wireless symposium (RWS) (pp. 1–3).

  11. Xu, H., Bihr, U., Becker, J., & Ortmanns, M. (2013). A multi-channel neural stimulator with resonance compensated inductive receiver and closed-loop smart power management. In 2013 IEEE international symposium on circuits and systems (ISCAS2013). IEEE (pp. 638–641).

  12. Wang, G., Liu, W., Sivaprakasam, M., & Kendir, G. A. (2005). Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10), 2109–2117.

    Article  Google Scholar 

  13. Wang, G., Liu, W., Bashirullah, R., Sivaprakasam, M., Kendir, G.A., Ji, Y., Humayun, M.S., & Weiland, J.D. (2004). A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. In 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512), IEEE (Vol. 4. pp. IV–17).

  14. Si, P., Hu, A. P., Malpas, S., & Budgett, D. (2008). A frequency control method for regulating wireless power to implantable devices. IEEE Transactions on Biomedical Circuits and Systems, 2(1), 22–29.

    Article  Google Scholar 

  15. Kiani, M., & Ghovanloo, M. (2010). An RFID-based closed-loop wireless power transmission system for biomedical applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(4), 260–264.

    Article  Google Scholar 

  16. Kiani, M., Kwon, K.Y., Zhang, F., Oweiss, K., & Ghovanloo, M. (2011). Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject. In 2011 annual international conference of the IEEE engineering in medicine and biology society. IEEE (pp. 7658–7661).

  17. Troyk, P. R., & Schwan, M. A. K. (1992). Closed-loop class E transcutaneous power and data link for micro-implants. IEEE Transactions on Biomedical Engineering, 39(6), 589–599.

    Article  Google Scholar 

  18. Hidayat, R., Rustam, R., Agustina, E., Wulandari, I.Y., & Rahim, R. (2018). A systematic approach to improving the performance of spiral antenna. INA-Rxiv. January (Vol. 13).

  19. Biswas, D. K., Tasneem, N. T., & Mahbub, I. (2019). Effects of coaxial-lateral and coaxial-angular displacements on link efficiency of a wirelessly powered optogenetic implant: design, modeling, and experimental validation. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3(4), 269–275.

    Article  Google Scholar 

  20. Raju, S., Wu, R., Chan, M., & Yue, C. P. (2014). Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Transactions on Power Electronics, 29(1), 481–490.

    Article  Google Scholar 

  21. Biswas, D., Tasneem, N., Hyde, J., Sinclair, M., & Mahbub, I. (2018). Miniaturized wireless power transfer module design for brain optoelectronic implant. In 2018 IEEE international microwave biomedical conference (IMBioC). IEEE (pp. 163–165).

  22. Tasneem, N.T., Suri, S.R., & Mahbub, I. (2018). A low-power CMOS voltage boosting rectifier for wireless power transfer applications. In 2018 Texas symposium on wireless and microwave circuits and systems (WMCS) (pp. 1–4).

  23. Saw, S.K., Meher, P., & Chakraborty, S.K. (2017). Design of high frequency d-flip-flop circuit for phase detector application. In TENCON 2017–2017 IEEE region 10 conference (pp. 229–233).

  24. Stan, M. R., Tenca, A. F., & Ercegovac, M. D. (1998). Long and fast up/downcounters. IEEE Transactions on Computers, 47(7), 722–735.

    Article  Google Scholar 

Download references

Acknowledgements

This work is based upon work supported by the National Science Foundation (NSF) under Grant No. ECCS 1943990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishat T. Tasneem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tasneem, N.T., Biswas, D.K. & Mahbub, I. A CMOS closed-loop miniaturized wireless power transfer system for brain implant applications. Analog Integr Circ Sig Process 105, 335–345 (2020). https://doi.org/10.1007/s10470-020-01717-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01717-7

Keywords

  • Adaptive regulation
  • Brain implant
  • Load modulation
  • Threshold window
  • Wireless power transfer