Yeh, A. J., Ho, J. S., Tanabe, Y., Neofytou, E., Beygui, R. E., & Poon, A. S. (2013). Wirelessly powering miniature implants for optogenetic stimulation. Applied Physics Letters, 103(16), 163701.
Article
Google Scholar
Akin, T., Najafi, K., & Bradley, R. M. (1998). A wireless implantable multi-channel digital neural recording system for a micromachined sieve electrode. IEEE Journal of Solid-State Circuits, 33(1), 109–118.
Article
Google Scholar
Chen, K., Yang, Z., Hoang, L., Weiland, J., Humayun, M., & Liu, W. (2010). An integrated 256-channel epiretinal prosthesis. IEEE Journal of Solid-State Circuits, 45(9), 1946–1956.
Article
Google Scholar
Li, X., Tsui, C.-Y., & Ki, W.-H. (2015). A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE Journal of Solid-State Circuits, 50(4), 978–989.
Article
Google Scholar
Park, S. I., Brenner, D. S., Shin, G., Morgan, C. D., Copits, B. A., Chung, H. U., et al. (2015). Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology, 33(12), 1280.
Article
Google Scholar
Lee, J., & Nam, S. (2010). Fundamental aspects of near-field coupling small antennas for wireless power transfer. IEEE Transactions on Antennas and Propagation, 58(11), 3442–3449.
Article
Google Scholar
Pan, J., Abidi, A. A., Rozgić, D., Chandrakumar, H., & Marković, D. (2017). 22.7 an inductively-coupled wireless power-transfer system that is immune to distance and load variations. In 2017 IEEE International Solid-State Circuits Conference (ISSCC). IEEE (pp. 382–383).
Lee, B., Kiani, M., & Ghovanloo, M. (2016). A triple-loop inductive power transmission system for biomedical applications. IEEE Transactions on Biomedical Circuits and Systems, 10(1), 138–148.
Article
Google Scholar
Huang, C., Kawajiri, T., & Ishikuro, H. (2018). A 13.56 MHz wireless power transfer system with enhanced load-transient response and efficiency by fully integrated wireless constant-idle-time control for biomedical implants. IEEE Journal of Solid-State Circuits, 53(2), 538–551.
Article
Google Scholar
Tasneem, N.T., Biswas, D.K., & Mahbub, I. (2019). Closed-loop adaptive transcutaneous wireless power transfer system for implantable sensors. In 2019 IEEE radio and wireless symposium (RWS) (pp. 1–3).
Xu, H., Bihr, U., Becker, J., & Ortmanns, M. (2013). A multi-channel neural stimulator with resonance compensated inductive receiver and closed-loop smart power management. In 2013 IEEE international symposium on circuits and systems (ISCAS2013). IEEE (pp. 638–641).
Wang, G., Liu, W., Sivaprakasam, M., & Kendir, G. A. (2005). Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10), 2109–2117.
Article
Google Scholar
Wang, G., Liu, W., Bashirullah, R., Sivaprakasam, M., Kendir, G.A., Ji, Y., Humayun, M.S., & Weiland, J.D. (2004). A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. In 2004 IEEE international symposium on circuits and systems (IEEE Cat. No. 04CH37512), IEEE (Vol. 4. pp. IV–17).
Si, P., Hu, A. P., Malpas, S., & Budgett, D. (2008). A frequency control method for regulating wireless power to implantable devices. IEEE Transactions on Biomedical Circuits and Systems, 2(1), 22–29.
Article
Google Scholar
Kiani, M., & Ghovanloo, M. (2010). An RFID-based closed-loop wireless power transmission system for biomedical applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(4), 260–264.
Article
Google Scholar
Kiani, M., Kwon, K.Y., Zhang, F., Oweiss, K., & Ghovanloo, M. (2011). Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject. In 2011 annual international conference of the IEEE engineering in medicine and biology society. IEEE (pp. 7658–7661).
Troyk, P. R., & Schwan, M. A. K. (1992). Closed-loop class E transcutaneous power and data link for micro-implants. IEEE Transactions on Biomedical Engineering, 39(6), 589–599.
Article
Google Scholar
Hidayat, R., Rustam, R., Agustina, E., Wulandari, I.Y., & Rahim, R. (2018). A systematic approach to improving the performance of spiral antenna. INA-Rxiv. January (Vol. 13).
Biswas, D. K., Tasneem, N. T., & Mahbub, I. (2019). Effects of coaxial-lateral and coaxial-angular displacements on link efficiency of a wirelessly powered optogenetic implant: design, modeling, and experimental validation. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3(4), 269–275.
Article
Google Scholar
Raju, S., Wu, R., Chan, M., & Yue, C. P. (2014). Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Transactions on Power Electronics, 29(1), 481–490.
Article
Google Scholar
Biswas, D., Tasneem, N., Hyde, J., Sinclair, M., & Mahbub, I. (2018). Miniaturized wireless power transfer module design for brain optoelectronic implant. In 2018 IEEE international microwave biomedical conference (IMBioC). IEEE (pp. 163–165).
Tasneem, N.T., Suri, S.R., & Mahbub, I. (2018). A low-power CMOS voltage boosting rectifier for wireless power transfer applications. In 2018 Texas symposium on wireless and microwave circuits and systems (WMCS) (pp. 1–4).
Saw, S.K., Meher, P., & Chakraborty, S.K. (2017). Design of high frequency d-flip-flop circuit for phase detector application. In TENCON 2017–2017 IEEE region 10 conference (pp. 229–233).
Stan, M. R., Tenca, A. F., & Ercegovac, M. D. (1998). Long and fast up/downcounters. IEEE Transactions on Computers, 47(7), 722–735.
Article
Google Scholar