Skip to main content

Advertisement

Log in

A fully integrated parallel stages converter for thermal energy harvesting

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a fully integrated DC/DC converter for Thermal Energy Harvesting is presented, it is based on a parallel stages architecture as a technique to increase the conversion efficiency without using frequency or duty cycle modulation. The circuit was designed for a CMOS 180 nm process, with an active area of \(954\,\upmu {\mathrm{m}} \times 341\,\upmu {\mathrm{m}}\). The post-layout simulation shows a 87\(\%\) peak efficiency with 1.2 V for a minimum operating input voltage of 250 mV at 33 kHz of switching frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buzilo, R., Likhterov, B., Giterman, R., Levi, I., Fish, A., & Belemky, A. (2014). Approach to integrated energy harvesting voltage source based on novel active TEG array system. In IEEE faible tension faible consommation (pp. 1–4).

  2. You, K., Kim, H., Kim, M., & Yang, Y. (2011). 900 MHz CMOS RF-to-DC converter using a cross-coupled charge pump for energy harvesting. In IEEE international symposium on radio-frequency integration technology (pp. 149–152).

  3. Heo, S., Yang, Y., Lee, J., Lee, S., & Kim, J. (2011). Micro energy management for energy harvesting at maximum power point. In International symposium on integrated circuits (pp. 136–139).

  4. Peng, H., Tang, N., Tang, Y., & Heo, D. (2014). CMOS startup charge pump with body bias and backward control for energy harvesting step-up converters. IEEE Transactions on Circuits and Systems, 61, 1618–1628.

    Article  Google Scholar 

  5. Bassi, G., Colalongo, L., Rihelli, A., & Kovacs-Vajna, Z. (2012) A 150 mV-1.2 V fully-integrated DC–DC converter for thermal energy harvesting. In ISPEPED (pp. 331–334)

  6. Carlson, E., Strunz, K., & Otis, B. (2009). 20 mV input boost converter for thermoelectric energy harvesting. In Symposium of VLSI circuits (pp. 162–163).

  7. Dickson, J. F. (1976). On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier techniques. IEEE Journal of Solid-State Circuits, 11, 374–378.

    Article  Google Scholar 

  8. Rahman, A., Khir, M. H., & Burhanudin, Z. A. (2013). CMOS based thermal energy generator for low power devices. International Journal of Scientific and Engineering Research, 4, 159–164.

    Google Scholar 

  9. Chavez, J. A., Ortega, J. A., Salazar, J., Turo, A., & Garcia, M. J. (2000). SPICE model of thermoelectric elements including thermal effects. In IEEE instrumentation and measurement technology conference (Vol. II, pp. 1019–1023).

  10. Marlow, TG12-4, Datasheet. Online. (2017). http://www.marlow.com/downloads/dl/file/id/258/product/178/tg12_4.pdf.

  11. Palumbo, G., Pappalardo, D., & Gaibotti, M. (2002). Charge-pump circuits: Power-consumption optimization. IEEE Transactions on Circuits and Systems, 49, 1535–1542.

    Article  Google Scholar 

  12. Nowacki, B., Nuno, P., & Joao, G. (2013). A simple 1 GHz non-overlapping two-phase clock generators for SC circuits. In International conference mixed design of integrated circuits and systems (pp. 174–178).

  13. Katic, J., Rodriguez, S., & Rusu, A. (2018). A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Transactions on Power Electronics, 33, 4125–4134.

    Article  Google Scholar 

  14. Yoon, S., Bautista, S., & Sánchez-Sinencio, E. (2018). An area efficient thermal energy harvester with reconfigurable capacitor charge pump for IoT applications. IEEE Transactions on Circuits and Systems II, 65, 1974–1978.

    Article  Google Scholar 

  15. Alhawari, M., Kilani, D., Mohammad, B., Saleh, H., & Ismail, M. (2016). An efficient thermal energy harvesting and power management for \(\upmu \)W werable BioChips. IEEE International Symposium on Circuits and Systems (pp. 2258–2261).

  16. Dini, M., Romani, A., Filippi, M., & Tartagni, M. (2016). A nanocurrent power management IC for low-voltage energy harvesting sources. IEEE Transactions on Power Enectronics, 31, 4292–4304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Rafael Flores Quintero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores Quintero, R.R., Flores-Verdad, G.E. A fully integrated parallel stages converter for thermal energy harvesting. Analog Integr Circ Sig Process 103, 95–101 (2020). https://doi.org/10.1007/s10470-020-01610-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01610-3

Keywords

Navigation