Skip to main content

Advertisement

Log in

An integrated multimode battery charger in a Qi compliant wireless power receiver

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an integrated multimode battery charger in a Qi-compliant wireless power receiver is presented. The proposed wireless battery charger includes a synchronous rectifier circuit and a multi feedback low dropout regulator. The charging circuit automatically switches trickle current, constant-current, and constant-voltage mode corresponding to battery voltage. Through control of the target rectified voltage from the perspective of the wireless power receiver, the synchronous rectifier circuit can generate an adaptive rectified voltage to closely track the battery voltage, which significantly reduce the power loss in the charging circuit. The wireless battery charger was implemented with a TSMC 0.18 µm BCD 1P5M process and the experimental results show the charging current of constant-current mode is 1 A and the final voltage of the wireless battery charger is 4.2 V. The maximum efficiency of the overall system is 78%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liou, C. Y., Kuo, C. J., & Mao, S. G. (2016). Wireless-power-transfer system using near-field capacitively coupled resonators. IEEE Transactions on Circuits and Systems II: Express Briefs,63(9), 898–902. https://doi.org/10.1109/TCSII.2016.2535042.

    Article  Google Scholar 

  2. Lam, Y. H., Ki, W. H., & Tsui, C. Y. (2006). Integrated low-loss CMOS active rectifier for wirelessly powered devices. IEEE Transactions on Circuits and Systems II: Express Briefs,53(12), 1378–1382. https://doi.org/10.1109/TCSII.2006.885400.

    Article  Google Scholar 

  3. Peters, C., Spreemann, D., Ortmanns, M., & Manoli, Y. (2008). A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications. IEEE Journal of Micromechanics and Microengineering,18(10), 1–9. https://doi.org/10.1088/0960-1317/18/10/104005.

    Article  Google Scholar 

  4. Hwang, J. T., Lee, D. S., Lee, J. H., Park, S. M., Jin, K. W., Ko, M. J., et al. (2016). An all-in-one (Qi, PMA and A4WP) 2.5 W fully integrated wireless battery charger IC for wearable applications. In IEEE international solid-state circuits conference. https://doi.org/10.1109/ISSCC.2016.7418065.

  5. Cheng, L., Ki, W. H., Lu, Y., & Yim, T. S. (2016). Adaptive on/off delay-compensated active rectifiers for wireless power transfer systems. IEEE Journal of Solid-State Circuits,51(3), 712–723. https://doi.org/10.1109/JSSC.2016.2517119.

    Article  Google Scholar 

  6. Cheng, L., Ki, W. H., & Tsui, C. Y. (2017). A 6.78-MHz single-stage wireless power receiver using a 3-mode reconfigurable resonant regulating rectifier. IEEE Journal of Solid-State Circuits,52(5), 1412–1423. https://doi.org/10.1109/JSSC.2017.2657603.

    Article  Google Scholar 

  7. Cheng, L., Ge, X. Y., Ng, W. C., Ki, W. H., Zheng, J. W., Kwok, T. F., et al. (2019). A 6.78 MHz 92.3%-peak-efficiency signal-stage wireless charger with CC–CV charging and on-chip bootstrapping techniques. In 2019 symposium on VLSI circuits. https://doi.org/10.23919/VLSIC.2019.8777990.

  8. Agarwal, K., Jegadeesan, R., Guo, Y. X., & Thakor, N. V. (2017). Wireless power transfer strategies for implantable bioelectronics: Methodological review. IEEE Reviews in Biomedical Engineering,10, 136–161. https://doi.org/10.1109/RBME.2017.2683520.

    Article  Google Scholar 

  9. Sodagar, A. M., Najafi, K., Wise, K. D. & Ghovanloo, M. (2006). Fully integrated CMOS power regulator for telemetry-powered implantable biomedical Microsystems. In IEEE custom integrated circuits conference. https://doi.org/10.1109/CICC.2006.320862.

  10. Riehl, P. S., Satyamoorthy, A., Akram, H., Yen, Y. C., Yang, J. C., Juan, B., et al. (2015). Wireless power systems for mobile devices supporting inductive and resonant operating modes. IEEE Transactions on Microwave Theory and Techniques,63(3), 780–790. https://doi.org/10.1109/TMTT.2015.2398413.

    Article  Google Scholar 

  11. Musavi, F., Edington, M., & Eberle, W. (2012). Wireless power transfer: A survey of EV battery charging technologies. IEEE Energy Conversion Congress and Exposition. https://doi.org/10.1109/ECCE.2012.6342593.

    Article  Google Scholar 

  12. Galizzi, M., Caldara, M., Re, V., & Vitali, A. (2013). A novel Qi-standard compliant full-bridge wireless power charger for low power devices. IEEE Wireless Power Transfer. https://doi.org/10.1109/WPT.2013.6556877.

    Article  Google Scholar 

  13. Liu, P. J., & Chien, L. H. (2018). A high-efficiency integrated multimode battery charger with an adaptive supply voltage control scheme. IEEE Transactions on Power Electronics,33(8), 6869–6876. https://doi.org/10.1109/TPEL.2017.2761816.

    Article  Google Scholar 

  14. Quang, P. H., Ha, T. T., & Lee, J. W. (2015). A fully integrated multimode wireless power charger IC with adaptive supply control and built-in resistance compensation. IEEE Transactions on Industrial Electronics,62(2), 1251–1261. https://doi.org/10.1109/TIE.2014.2336618.

    Article  Google Scholar 

  15. Wu, C. B., Xie, G. J., Zhang, Z., Cheng, X., Fei, T. R., Zeng, J. M., et al. (2018). A 15 W wireless power receiver with an improved full-wave synchronous rectifier. IEICE Electronics Express,15(20), 1–9. https://doi.org/10.1587/elex.15.20180732.

    Article  Google Scholar 

  16. Wu, C. B., Zhang, Z., Zeng, J. M., Cheng, X., & Xie, G. J. (2018). A Qi compatible wireless power receiver with integrated full-wave synchronous rectifier. Science China Information Sciences,61, 1–3. https://doi.org/10.1007/s11432-018-9584-4.

    Article  Google Scholar 

  17. Moon, Y. K., Park, H. G., Jang, J. H., Kim, S., & Lee, K. Y. (2014). A high efficiency transmitter and receiver for magnetic resonant wireless battery charging system in 0.35 µm BCD. Analog Integrated Circuits and Signal Processing,79(1), 57–72. https://doi.org/10.1007/s10470-013-0253-1.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61674049, U19A2053), State Key Lab of ASIC and System (2019KF003) and the Fundamental Research Funds for Central Universities (PA2018GDQT0017, JZ2019HGTB0092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Zhang, Z., Cheng, X. et al. An integrated multimode battery charger in a Qi compliant wireless power receiver. Analog Integr Circ Sig Process 103, 425–434 (2020). https://doi.org/10.1007/s10470-019-01582-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01582-z

Keywords

Navigation