Skip to main content
Log in

On the design and analysis of a compact array with 1T1R RRAM memory element

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an analysis of a Verilog-A memristor model is discussed in order to be implemented in a 1T1R cell by exploring the characterization data of an OxRRAM device. The proposed analysis is done using mathematical formulation and verified by Spectre circuit simulator. The analysis is tested for a digital logic gate such as NAND gate for both, SET and RESET processes to perform read and write operations. Moreover, we explore diverse types of memory cells, two configurations are considered as a PROM and an EEPROM. Additionally, the implementation of the Verilog-A model on a crossbar array is discussed in details in terms of switching speed and the range of resistance. A comparison between the performances of various existing memory cells is also discussed. Our simulation results carry the desired nonlinear memristor fingerprint, the applicability to fit different switching behaviors. These results are verified by both electrical and experimental characterization data. We conclude that the proposed Verilog-A model is suitable for digitals circuits, crossbar arrays, low-power and high-density applications at the industrial levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory,18, 507–519.

    Article  Google Scholar 

  2. Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE,64, 209–223.

    Article  MathSciNet  Google Scholar 

  3. Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In The 2013 international joint conference on IEEE neural networks (IJCNN) (pp. 1–7).

  4. Kule, M., Rahaman, H., & Bhattacharya, B. B. (2015). On finding a defect-free component in nanoscale crossbar circuits. Procedia Computer Science,70, 421–427.

    Article  Google Scholar 

  5. Halawani, Y., Mohammad, B., Homouz, D., Al-Qutayri, M., & Saleh, H. H. (2016). Modeling and optimization of memristor and STT-RAM-based memory for low-power applications. IEEE Transactions on VLSI Systems,24(3), 1003–1014.

    Article  Google Scholar 

  6. Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,32(8), 1201–1214.

    Article  Google Scholar 

  7. Rziga, F. O., Mbarek, K., Ghedira, S., & Besbes, K. (2017). The basic I–V characteristics of memristor model: Simulation and analysis. Applied Physics A,123(4), 288.

    Article  Google Scholar 

  8. Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., et al. (2015). HfO 2-based OxRAM devices as synapses for convolutional neural networks. IEEE Transactions on Electron Devices,62(8), 2494–2501.

    Article  Google Scholar 

  9. Huang J. J., Tseng Y. M., Luo W. C., Hsu C. W., & Hou T. H. (2011) One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. In Electron devices meeting (IEDM), 2011 IEEE International (pp. 31–37).

  10. Mbarek, K., Rziga, F. O., Ghedira, S., & Besbes, K. (2017) An analysis of the dynamics of SPICE memristor model. In 2017 international conference on IEEE control, automation and diagnosis (ICCAD) (pp. 054–059).

  11. Wang, Z. R., Su, Y. T., Li, Y., Zhou, Y. X., Chu, T. J., Chang, K. C., et al. (2017). Functionally complete Boolean logic in 1T1R resistive random access memory”. IEEE Electron Device Letters,38, 179–182.

    Article  Google Scholar 

  12. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G., et al. (2014). MAGIC—Memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs,61, 895–899.

    Article  Google Scholar 

  13. Sun, L., Zheng, N., Zhang, T., & Mazumder, P. (2018). Fault modeling and parallel testing for 1T1M memory array. IEEE Transactions on Nanotechnology,17, 437–451.

    Article  Google Scholar 

  14. Hu, M., Chen, Y., Yang, J. J., Wang, Y., & Li, H. H. (2017). A compact memristor-based dynamic synapse for spiking neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,36(8), 1353–1366.

    Article  Google Scholar 

  15. Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T., et al. (2018). Neuromorphic computing with multi-memristive synapses. Nature Communications,9(1), 2514.

    Article  Google Scholar 

  16. Acciarito, S., Cardarilli, G. C., Cristini, A., Di Nunzio, L., Fazzolari, R., Khanal, G. M., et al. (2017). Hardware design of LIF with Latency neuron model with memristive STDP synapses”. Integration, the VLSI Journal,59, 81–89.

    Article  Google Scholar 

  17. Calayir, V., & Pileggi, L. (2015). Device requirements and technology-driven architecture optimization for analog neurocomputing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,5(2), 162–172.

    Article  Google Scholar 

  18. Strukov D. B., Stewart D. R., Borghetti J., Li X., Pickett M., Ribeiro G. M., et al. (2010). Hybrid CMOS/memristor circuits. In Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS), Paris, France, 30 May–2 June 2010 (pp. 1967–1970).

  19. Shin, S., Kim, K., & Kang, S. M. (2010). Data-dependent statistical memory model for passive memristive devices array. IEEE Transactions on Circuits and Systems II: Express Briefs,57, 986–990.

    Article  Google Scholar 

  20. Xu C., Dong X., Jouppi N. P., & Xie Y. (2011) Design implications of memristor-based RRAM cross-point structures. In Design, automation & test in Europe conference & exhibition (DATE), Grenoble, France, 14–18 March 2011 (pp. 1–6).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Ouaja Rziga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbarek, K., Rziga, F.O., Ghedira, S. et al. On the design and analysis of a compact array with 1T1R RRAM memory element. Analog Integr Circ Sig Process 102, 27–37 (2020). https://doi.org/10.1007/s10470-019-01488-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01488-w

Keywords

Navigation