On the design and analysis of a compact array with 1T1R RRAM memory element

  • Khaoula Mbarek
  • Faten Ouaja RzigaEmail author
  • Sami Ghedira
  • Kamel Besbes


In this paper, an analysis of a Verilog-A memristor model is discussed in order to be implemented in a 1T1R cell by exploring the characterization data of an OxRRAM device. The proposed analysis is done using mathematical formulation and verified by Spectre circuit simulator. The analysis is tested for a digital logic gate such as NAND gate for both, SET and RESET processes to perform read and write operations. Moreover, we explore diverse types of memory cells, two configurations are considered as a PROM and an EEPROM. Additionally, the implementation of the Verilog-A model on a crossbar array is discussed in details in terms of switching speed and the range of resistance. A comparison between the performances of various existing memory cells is also discussed. Our simulation results carry the desired nonlinear memristor fingerprint, the applicability to fit different switching behaviors. These results are verified by both electrical and experimental characterization data. We conclude that the proposed Verilog-A model is suitable for digitals circuits, crossbar arrays, low-power and high-density applications at the industrial levels.


ELEN-D-19-00052 memristor 1T1R cell OxRRAM device Crossbar array Switching behavior Verilog-A model 



  1. 1.
    Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.CrossRefGoogle Scholar
  2. 2.
    Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64, 209–223.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In The 2013 international joint conference on IEEE neural networks (IJCNN) (pp. 1–7).Google Scholar
  4. 4.
    Kule, M., Rahaman, H., & Bhattacharya, B. B. (2015). On finding a defect-free component in nanoscale crossbar circuits. Procedia Computer Science, 70, 421–427.CrossRefGoogle Scholar
  5. 5.
    Halawani, Y., Mohammad, B., Homouz, D., Al-Qutayri, M., & Saleh, H. H. (2016). Modeling and optimization of memristor and STT-RAM-based memory for low-power applications. IEEE Transactions on VLSI Systems, 24(3), 1003–1014.CrossRefGoogle Scholar
  6. 6.
    Yakopcic, C., Taha, T. M., Subramanyam, G., & Pino, R. E. (2013). Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(8), 1201–1214.CrossRefGoogle Scholar
  7. 7.
    Rziga, F. O., Mbarek, K., Ghedira, S., & Besbes, K. (2017). The basic I–V characteristics of memristor model: Simulation and analysis. Applied Physics A, 123(4), 288.CrossRefGoogle Scholar
  8. 8.
    Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., et al. (2015). HfO 2-based OxRAM devices as synapses for convolutional neural networks. IEEE Transactions on Electron Devices, 62(8), 2494–2501.CrossRefGoogle Scholar
  9. 9.
    Huang J. J., Tseng Y. M., Luo W. C., Hsu C. W., & Hou T. H. (2011) One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications. In Electron devices meeting (IEDM), 2011 IEEE International (pp. 31–37).Google Scholar
  10. 10.
    Mbarek, K., Rziga, F. O., Ghedira, S., & Besbes, K. (2017) An analysis of the dynamics of SPICE memristor model. In 2017 international conference on IEEE control, automation and diagnosis (ICCAD) (pp. 054–059).Google Scholar
  11. 11.
    Wang, Z. R., Su, Y. T., Li, Y., Zhou, Y. X., Chu, T. J., Chang, K. C., et al. (2017). Functionally complete Boolean logic in 1T1R resistive random access memory”. IEEE Electron Device Letters, 38, 179–182.CrossRefGoogle Scholar
  12. 12.
    Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G., et al. (2014). MAGIC—Memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 895–899.CrossRefGoogle Scholar
  13. 13.
    Sun, L., Zheng, N., Zhang, T., & Mazumder, P. (2018). Fault modeling and parallel testing for 1T1M memory array. IEEE Transactions on Nanotechnology, 17, 437–451.CrossRefGoogle Scholar
  14. 14.
    Hu, M., Chen, Y., Yang, J. J., Wang, Y., & Li, H. H. (2017). A compact memristor-based dynamic synapse for spiking neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36(8), 1353–1366.CrossRefGoogle Scholar
  15. 15.
    Boybat, I., Le Gallo, M., Nandakumar, S. R., Moraitis, T., Parnell, T., Tuma, T., et al. (2018). Neuromorphic computing with multi-memristive synapses. Nature Communications, 9(1), 2514.CrossRefGoogle Scholar
  16. 16.
    Acciarito, S., Cardarilli, G. C., Cristini, A., Di Nunzio, L., Fazzolari, R., Khanal, G. M., et al. (2017). Hardware design of LIF with Latency neuron model with memristive STDP synapses”. Integration, the VLSI Journal, 59, 81–89.CrossRefGoogle Scholar
  17. 17.
    Calayir, V., & Pileggi, L. (2015). Device requirements and technology-driven architecture optimization for analog neurocomputing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(2), 162–172.CrossRefGoogle Scholar
  18. 18.
    Strukov D. B., Stewart D. R., Borghetti J., Li X., Pickett M., Ribeiro G. M., et al. (2010). Hybrid CMOS/memristor circuits. In Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS), Paris, France, 30 May–2 June 2010 (pp. 1967–1970).Google Scholar
  19. 19.
    Shin, S., Kim, K., & Kang, S. M. (2010). Data-dependent statistical memory model for passive memristive devices array. IEEE Transactions on Circuits and Systems II: Express Briefs, 57, 986–990.CrossRefGoogle Scholar
  20. 20.
    Xu C., Dong X., Jouppi N. P., & Xie Y. (2011) Design implications of memristor-based RRAM cross-point structures. In Design, automation & test in Europe conference & exhibition (DATE), Grenoble, France, 14–18 March 2011 (pp. 1–6).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microelectronics and Instrumentation LabUniversity of MonastirMonastirTunisia
  2. 2.Center for Research in Microelectronics and NanotechnologyTechnopoleSousseTunisia

Personalised recommendations