Skip to main content

Adapting Laplacian based filtering in digital image processing to a retina-inspired analog image processing circuit


In this paper, a unique biologically inspired retina circuit architecture providing Laplacian filter based analog image processing has been suggested. A digital image filtering method is utilized for this aim. Convolution theory and masking technique have an important place among digital image processing methods. These two mathematical operations can be easily done with basic electronic circuit structures. We use current mirrors and current subtractor circuit for the purpose of performing convolution by the use of masking technique on any image. The concept of human retina is able to be mimicked by the help of using silicon circuits. A retina construction can be thought as a group of pixel structures. Because of this reason, we first design a novel pixel circuit as a subcircuit for the retina structure. Our new retina-inspired neuromorphic pixel consists of only 8 MOS transistors. Then, 10 k identical pixel circuits are united together with the help of proper subcircuit connections to achieve a retina structure of size 100 × 100 pixels which enables edge detection feature on images thanks to Laplacian filtering. We compare the analysis results of our grid retina circuit with the theoretical Laplacian filter method used in digital image processing. We obtain analysis results of four different grayscale images that agree well with the expected theoretical results for Laplacian filtering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Shepherd, G. M. (2003). The synaptic organization of the brain. Oxford: Oxford University Press.

    Google Scholar 

  2. 2.

    van Hateren, J. H. (1992). A theory of maximizing sensory information. Biological Cybernetics, 68(1), 23–29.

    Article  MATH  Google Scholar 

  3. 3.

    Zaghloul, K. A., & Boahen, K. (2004). Optic nerve signals in a neuromorphic chip I: Outer and inner retina models. IEEE Transactions on Biomedical Engineering, 51(4), 657–666.

    Article  Google Scholar 

  4. 4.

    Cook, P. B., & McReynolds, J. S. (1998). Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nature Neuroscience, 1(8), 714.

    Article  Google Scholar 

  5. 5.

    Indiveri, G., Linares-Barranco, B., Hamilton, T. J., et al. (2011). Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5, 73.

    Google Scholar 

  6. 6.

    Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–1636.

    Article  Google Scholar 

  7. 7.

    Babacan, Y., Kaçar, F., & Gürkan, K. (2016). A spiking and bursting neuron circuit based on memristor. Neurocomputing, 203, 86–91.

    Article  Google Scholar 

  8. 8.

    Babacan, Y., & Kaçar, F. (2017). Memristor emulator with spike-timing-dependent-plasticity. AEU-Int. J. Electron. Commun., 73, 16–22.

    Article  Google Scholar 

  9. 9.

    Irizarry-Valle, Y., & Parker, A. C. (2015). An astrocyte neuromorphic circuit that influences neuronal phase synchrony. IEEE Transactions on Biomedical Circuits and Systems, 9(2), 175–187.

    Article  Google Scholar 

  10. 10.

    Li, Z., Liu, C., Wang, Y., et al. (2015). An overview on memristor crossabr based neuromorphic circuit and architecture. In IEEE/IFIP International Conference on VLSI Syst. VLSI-SoC (pp. 52–56).

  11. 11.

    Barzegarjalali, S., Parker, A. C. (2016). A neuromorphic circuit mimicking biological short-term memory. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine Biology Society EMBS (pp. 1401–1404).

  12. 12.

    Yoon, K., Choi, S., Shin, Y. (2016). Area efficient neuromorphic circuit based on stochastic computation. In ISOCC 2016—Intenational SoC Design Conference Smart SoC Intelligent Things, 2016 (pp. 73–74).

  13. 13.

    Barzegarjalali, S., Parker, A. C., Fellow, L. (2016). Noisy neuromorphic circuit modeling obsessive compulsive disorder. In 29th IEEE International System-on-Chip Conference (SOCC), 2016 (pp. 327–332) IEEE.

  14. 14.

    Zhang, J., Wang, Y., Zhang, X., Huang, R. (2017) Compact digital-controlled neuromorphic circuit with low power consumption. In IEEE International Symposium on Circuits Systems (pp. 1–4).

  15. 15.

    Fayyazi, A., Ansari, M., Kamal, M., Afzali-Kusha, A., & Pedram, M. (2018). An ultra low-power memristive neuromorphic circuit for internet of things smart sensors. IEEE Internet Things J, 5(2), 1011–1022.

    Article  Google Scholar 

  16. 16.

    Mahowald, M. A., & Mead, C. (1991). The silicon retina, 264, 76–82.

    Google Scholar 

  17. 17.

    Zaghloul, K. A., & Boahen, K. (2006). A silicon retina that reproduces signals in the optic nerve. Journal of Neural Engineering, 3(4), 257.

    Article  Google Scholar 

  18. 18.

    Mhani, A., Bouvier, G., Herault, J. (1995). A contrast and motion-sensitive silicon retina. In ESSCIRC’95 Twenty-first European Solid-State Circuits Conference (pp. 326–329).

  19. 19.

    Andreou, A. G., Boahen, K. A. (1994). A 48,000 pixel, 590,000 transistor silicon retina in current-mode subthreshold CMOS. In Proceedings of the 37th Midwest Symposium onCircuits and Systems (pp. 97–102).

  20. 20.

    Publio, R., Oliveira, R. F., & Roque, A. C. (2006). A realistic model of rod photoreceptor for use in a retina network model. Neurocomputing, 69(10), 1020–1024.

    Article  Google Scholar 

  21. 21.

    Cosp, J., Madrenas, J., & Fernández, D. (2006). Design and basic blocks of a neuromorphic VLSI analogue vision system. Neurocomputing, 69(16–18), 1962–1970.

    Article  Google Scholar 

  22. 22.

    Delbruck, T. (1993). Silicon retina with correlation-based, velocity-tuned pixels. IEEE Transaction on Neural Networks, 4(3), 529–541.

    Article  Google Scholar 

  23. 23.

    Ahmadi, H., Sayedi, S. M. (2012). Design of a neuromorphic edge detector vision chip with color and intensity change disambiguation. In 25th IEEE Canadian Conference (IEEE, 2012) on Electrical & Computer Engineering (CCECE) (pp. 1–5).

  24. 24.

    Chiang, C. T., & Wu, C. Y. (2004). Implantable neuromorphic vision chips. Electronics Letters, 40(6), 361–363.

    Article  Google Scholar 

  25. 25.

    Yildirim, M., Babacan, Y., & Kacar, F. (2018). Memristive retinomorphic grid architecture removing noise and preserving edge. AEU - International Journal of Electronics and Communications, 97, 38–44.

    Article  Google Scholar 

  26. 26.

    Boahen, K. (1996). Retinomorphic vision systems. Microelectronics for neural networks. In Proceedings of Fifth International Conference (IEEE, 1996) (pp. 2–14).

  27. 27.

    Siskos, S. (2010). Low voltage analog median filters implementation. In 2010 Proceedings of the IEEE International Conference on Imaging Systems and Techniques, IST 2010 (pp. 166–170).

  28. 28.

    Taguchi, T., Ogawa, M., Shibata, T. (2003). An analog image processing LSI employing scanning line-parallel processing. In European Solid-State Circuits Conference (pp. 65–68).

  29. 29.

    Shimmi, T., Kobayashi, H., Yagi, T., Sawaji, T., Matsumoto, T., Abidi, A.A. (1992). A parallel analog CMOS signal processor for image contrast enhancement. In ESSCIRC’92 Eighteenth European Solid-State Circuits Conference (pp. 163–166).

  30. 30.

    Vornicu, I., Goraş, L. (2010). Image processing using a CMOS analog parallel architecture. In CAS 2010 Proceedings International Semiconductor Conference (pp. 461–464).

  31. 31.

    Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society B: Biological Sciences, 207(1167), 187–217.

    Article  Google Scholar 

  32. 32.

    Almazrooie, M., Venkat, I. (2014). Parallel Laplacian Filter using CUDA on GP-GPU’2014 (pp. 60–65).

  33. 33.

    Hajiaboli, M. R., Ahmad, M. O., & Wang, C. (2012). An edge-adapting Laplacian Kernel for nonlinear diffusion filters. IEEE Transactions on Image Processing, 21(4), 1561–1572.

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Shen, D. F., Chiu, C. W., Huang, P. J. (2006). Modified Laplacian Filter and intensity correction technique for image resolution enhancement. In Proceedings of the IEEE International Conference on Multimedia and Expo, ICME 2006 (pp. 457–460).

  35. 35.

    Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. Beijing: Publishing House of Electronics Industry.

    Google Scholar 

  36. 36.

    Sasivarnan, C., Jagan, A., Kaur, J., Jyoti, D., & Rao, D. S. (2011). Image quality assessment techniques pn spatial domain. IJCST., 2(3), 177–184.

    Google Scholar 

  37. 37.

    Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Melih Yildirim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildirim, M., Kacar, F. Adapting Laplacian based filtering in digital image processing to a retina-inspired analog image processing circuit. Analog Integr Circ Sig Process 100, 537–545 (2019).

Download citation


  • Retina-inspired
  • Laplacian filter
  • Edge detection
  • Analog image signal processing circuit
  • Convolution
  • Masking