Skip to main content
Log in

A low phase noise InGaP–GaAs HBT Colpitts VCO with a high quality differential inductor

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A balanced Colpitts voltage controlled oscillator (VCO) topology with its two implementations in a GaAs heterojunction bipolar transistor (HBT) process is introduced in this paper. A detailed analysis of phase noise, originating from the work by Hajimiri and Lee, is given, which depicts a specific outline of the phase noise generation mechanisms in GaAs HBT based harmonic oscillators including LC cross coupled/Colpitts/class C VCOs. In addition, phase noise expressions for HBT based VCOs are derived, compared and act as an optimization tool in oscillator designs. The theoretical analysis of phase noise is authenticated with two balanced Colpitts VCOs with their respective center oscillation frequencies of 850 MHz and 1670 MHz, which are fabricated in a 2 µm GaAs HBT H20HL process. Measurement results show a phase noise of − 139 dBc/Hz at 1 MHz offset from an 850 MHz carrier and a phase noise of − 134 dBc/Hz or less at 1 MHz offset from a 1700 MHz carrier. The output power variation is less than 0.5 dBm over the tuning range. A relatively good match between numerical simulation and measurements is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yoon, S.-W., et al. (2001). Cross-coupled differential oscillator MMICs with low phase-noise performance. IEEE Microwave and Wireless Components Letters, 11(12), 495–497.

    Article  Google Scholar 

  2. Meng, C. C., et al. (2005). 5.4 GHz − 127 dBc/Hz at 1 MHz GaInP/GaAs HBT quadrature VCO using stacked transformers. Electronics Letters, 41(16), 906–908.

    Article  Google Scholar 

  3. Ikeda, S., et al. (2017). A 0.5 V 5.96-GHz PLL with amplitude-regulated current-reuse VCO. IEEE Microwave and Wireless Components Letters, 27(3), 302–304.

    Article  Google Scholar 

  4. Tofighi, M.-R., & Daryoush, A. S. (2005). A 2.5-GHz InGaP/GaAs differential cross-coupled self-oscillating mixer (SOM) IC. IEEE Microwave and Wireless Components Letters, 15(4), 211–213.

    Article  Google Scholar 

  5. Hou, J.-A., & Wang, Y.-H. (2009). A 5 GHz differential Colpitts CMOS VCO using the bottom PMOS cross-coupled current source. IEEE Microwave and Wireless Components Letters, 19(6), 401–403.

    Article  Google Scholar 

  6. Yu, S.-A., Meng, C.-C., & Shey-Shi, L. (2002). A 5.7 GHz interpolative VCO using InGaP/GaAs HBT technology. IEEE Microwave and Wireless Components Letters, 12(2), 37–38.

    Article  Google Scholar 

  7. Tsai, M.-D., Cho, Y.-H., & Wang, H. (2005). A 5-GHz low phase noise differential Colpitts CMOS VCO. IEEE Microwave and Wireless Components Letters, 15(5), 327–329.

    Article  Google Scholar 

  8. Brown, T. W., et al. (2011). A 475 mV, 4.9 GHz enhanced swing differential Colpitts VCO with phase noise of − 136 dBc/Hz at a 3 MHz offset frequency. IEEE Journal of Solid-State Circuits, 46(8), 1782–1795.

    Article  Google Scholar 

  9. Wang, T.-P. (2011). A CMOS Colpitts VCO using negative-conductance boosted technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(11), 2623–2635.

    Article  MathSciNet  Google Scholar 

  10. Cheng, K.-W., & Je, M. (2013). A current-switching and gm-enhanced Colpitts quadrature VCO. IEEE Microwave and Wireless Components Letters, 23(3), 143–145.

    Article  Google Scholar 

  11. Iotti, L., Mazzanti, A., & Svelto, F. (2017). Insights into phase-noise scaling in switch-coupled multi-core LC VCOs for E-band adaptive modulation links. IEEE Journal of Solid-State Circuits, 52(7), 1703–1718.

    Article  Google Scholar 

  12. Lu, C.-H., et al. (2012). Monolithic 2-μm/0.5-μm GaAs HBT-HEMT (BiHEMT) process for low phase noise voltage controlled oscillators (VCOs). In Microwave conference proceedings (APMC), 2012 Asia-Pacific. Washington: IEEE.

  13. Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.

    Article  Google Scholar 

  14. Fard, A., & Andreani, P. (2007). An analysis of 1/f2 phase noise in bipolar Colpitts oscillators (with a digression on bipolar differential-pair LC oscillators). IEEE Journal of Solid-State Circuits, 42(2), 374–384.

    Article  Google Scholar 

  15. Wang, X., Fard, A., & Andreani, P. (2005). Phase noise analysis and design of a 3-GHz bipolar differential Colpitts VCO. In Solid-state circuits conference, 2005. ESSCIRC 2005. Proceedings of the 31st European. Washington: IEEE.

  16. Rogers, J. W. M., & Plett, C. (2010). Radio frequency integrated circuit design (pp. 53–61). Norwood: Artech House.

    Google Scholar 

  17. Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43(12), 2716–2729.

    Article  Google Scholar 

  18. Kuylenstierna, D., et al. (2012). Design of low phase-noise oscillators and wideband VCOs in InGaP HBT technology. IEEE Transactions on Microwave Theory and Techniques, 60(11), 3420–3430.

    Article  Google Scholar 

  19. Andreani, P., et al. (2005). A study of phase noise in Colpitts and LC-tank CMOS oscillators. IEEE Journal of Solid-State Circuits, 40(5), 1107–1118.

    Article  Google Scholar 

  20. Andreani, P., & Wang, X. (2004). On the phase-noise and phase-error performances of multiphase LC CMOS VCOs. IEEE Journal of Solid-State Circuits, 39(11), 1883–1893.

    Article  Google Scholar 

  21. Xu, C. (2014). A novel pseudo differential transconductor for IEEE 802.11 WLANs. Analog Integrated Circuits and Signal Processing, 81(2), 385–391.

    Article  Google Scholar 

  22. Gray, P. R., et al. (2001). Analysis and design of analog integrated circuits (pp. 98–100). New York: Wiley.

    Google Scholar 

  23. Baek, D., et al. (2004). Ku-band InGaP–GaAs HBT MMIC VCOs with balanced and differential topologies. IEEE Transactions on Microwave Theory and Techniques, 52(4), 1353–1359.

    Article  Google Scholar 

  24. Corteshernandez, D. M., et al. (2014). Experimental characterization of frequency-dependent series resistance and inductance for ground shielded on-chip interconnects. IEEE Transactions on Electromagnetic Compatibility, 56(6), 1567–1575.

    Article  Google Scholar 

  25. Garner, P. J., Howes, M. J., & Snowden, C. M. (1998). Ka-band and MMIC pHEMT-based VCO’s with low phase-noise properties. IEEE Transactions on Microwave Theory and Techniques, 46(10), 1531–1536.

    Article  Google Scholar 

  26. Lee, C.-H., et al. (2000). A low phase noise X-band MMIC GaAs MESFET VCO. IEEE Microwave and Guided Wave Letters, 10(8), 325–327.

    Article  Google Scholar 

  27. Aparicio, R., & Hajimiri, A. (2002). A noise-shifting differential Colpitts VCO. IEEE Journal of Solid-State Circuits, 37(12), 1728–1736.

    Article  Google Scholar 

  28. Baek, D.-H., Kim, J.-G., & Hong, S. (2002). A Ku band InGaP/GaAs HBT MMIC VCO with a balanced and a differential topologies. In Microwave symposium digest, 2002 IEEE MTT-S international (Vol. 2). Washington: IEEE.

  29. Jacobsson, H., et al. (2000). Low-phase-noise low-power IC VCOs for 5–8-GHz wireless applications. IEEE Transactions on Microwave Theory and Techniques, 48(12), 2533–2539.

    Article  Google Scholar 

  30. Jansen, S., Negus, K., & Lee, D. (1997). Silicon bipolar VCO family for 1.1 to 2.2 GHz with fully-integrated tank and tuning circuits. In Solid-state circuits conference, 1997. Digest of technical papers. 43rd ISSCC., 1997 IEEE international. Washington: IEEE.

  31. Tiebout, M. (2002). A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor. In Solid-state circuits conference, 2002. ESSCIRC 2002. Proceedings of the 28th European. Washington: IEEE.

  32. Yim, S.-M. (2006). Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO. IEEE Transactions on Microwave Theory and Techniques, 54(1), 74–81.

    Article  MathSciNet  Google Scholar 

  33. Lee, S. H., et al. (2007). A low power injection locked LC-tank oscillator with current reused topology. IEEE Microwave and Wireless Components Letters, 17(3), 220–222.

    Article  Google Scholar 

  34. Saghati, A. P., & Entesari, K. (2014). A 1.7–2.2 GHz compact low phase-noise VCO using a widely-tuned SIW resonator. IEEE Microwave and Wireless Components Letters, 24(9), 622–624.

    Article  Google Scholar 

  35. Fanori, L., Mattsson, T., & Andreani, P. (2014). 21.6 A 2.4-to-5.3 GHz dual-core CMOS VCO with concentric 8-shaped coils. In IEEE international solid-state circuits conference IEEE, 2014 (pp. 370–371).

  36. Shahmohammadi, M., Babaie, M., & Staszewski, R. B. (2017). Tuning range extension of a transformer-based oscillator through common-mode Colpitts resonance. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(4), 836–846.

    Article  Google Scholar 

  37. Kim, J. H., et al. (2017). A dual-band LC VCO with low phase noise in 0.18 μm CMOS technology. In IEEE international symposium on radio-frequency integration technology (pp. 168–170). Washington: IEEE.

  38. Huang, Q. (2000). Phase noise to carrier ratio in LC oscillators. IEEE Transactions on Circuits and Systems I-Regular Papers, 47(7), 75–107.

    Google Scholar 

Download references

Acknowledgements

Thanks to CDMG (Compact Device Modeling Group) group lead by Professor Jun Liu in Hangzhou Dianzi University for the valuable process assessment and modification work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Gao, H., Chen, FJ. et al. A low phase noise InGaP–GaAs HBT Colpitts VCO with a high quality differential inductor. Analog Integr Circ Sig Process 100, 469–482 (2019). https://doi.org/10.1007/s10470-019-01426-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01426-w

Keywords

Navigation