Skip to main content
Log in

Application of fractal dimension for EEG based diagnosis of encephalopathy

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this study, we have investigated whether fractal dimension is a useful non linear feature for distinguishing electroencephalogram (EEG) of cases with encephalopathy from that of normal healthy EEGs. Both Higuchi’s fractal dimension and Katz’s fractal dimension were computed and were statistically analyzed between the normal and disease groups. Both parameters showed significant difference between the normal and encephalopathy groups, though Higuchi’s fractal dimension showed better discriminating ability. Support Vector Machine (SVM) classifier was also applied for the automated diagnosis of encephalopathy based on EEG. It has been found that SVM classifier performed better when Higuchi’s fractal dimension was utilized as feature set than using both Higuchi’s and Katz’s FD together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Faigle, R., Sutter, R., & Kaplan, P. W. (2013). The electroencephalography of encephalopathy in patients with endocrine and metabolic disorders. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 30(5), 505–516.

    Article  Google Scholar 

  2. Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277–283.

    Article  MathSciNet  MATH  Google Scholar 

  3. Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156.

    Article  Google Scholar 

  4. Arle, J. E., & Simon, R. H. (1990). An application of fractal dimension to the detection of transients in the electroencephalogram. Electroencephalography and Clinical Neurophysiology, 75(4), 296–305.

    Article  Google Scholar 

  5. Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77(5), 339–350.

    Article  MATH  Google Scholar 

  6. Esteller, R., Vachtsevanos, G., Echauz, J., Henry, T., Pennell, P., Epstein, C., et al. (1999). Fractal dimension characterizes seizure onset in epileptic patients. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. 2343–2346). IEEE.

  7. Ahmadlou, M., Adeli, H., & Adeli, A. (2010). Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. Journal of Clinical Neurophysiology, 27(5), 328–333.

    Article  Google Scholar 

  8. Gómez, C., Mediavilla, Á., Hornero, R., Abásolo, D., & Fernández, A. (2009). Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Medical Engineering & Physics, 31(3), 306–313.

    Article  Google Scholar 

  9. Kesić, S., & Spasić, S. Z. (2016). Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Computer Methods and Programs in Biomedicine, 133, 55–70.

    Article  Google Scholar 

  10. Carrozzi, M., Accardo, A., & Bouquet, F. (2004). Analysis of sleep-stage characteristics in full-term newborns by means of spectral and fractal parameters. Sleep, 27(7), 1384–1393.

    Article  Google Scholar 

  11. Šušmáková, K., & Krakovská, A. (2008). Discrimination ability of individual measures used in sleep stages classification. Artificial Intelligence in Medicine, 44(3), 261–277.

    Article  Google Scholar 

  12. Georgiev, S., Minchev, Z., Christova, C., & Philipova, D. (2009). EEG fractal dimension measurement before and after human auditory stimulation. Bioautomation, 12, 70–81.

    Google Scholar 

  13. Klonowski, W., Olejarczyk, E., Stepien, R., Jalowiecki, P., & Rudner, R. (2006). Monitoring the depth of anaesthesia using fractal complexity method. In Complexus mundi: emergent patterns in nature (pp. 333-342).

  14. Gifani, P., Rabiee, H., Hashemi, M., Taslimi, P., & Ghanbari, M. (2007). Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification. Journal of the Franklin Institute, 344(3), 212–229.

    Article  MATH  Google Scholar 

  15. Ferenets, R., Lipping, T., Suominen, P., Turunen, J., Puumala, P., Jantti, V., et al. (2006). Comparison of the properties of EEG spindles in sleep and propofol anesthesia. In 28th annual international conference of the IEEE engineering in medicine and biology society, EMBS’06 (pp. 6356–6359). IEEE.

  16. Liu, Y., Sourina, O., & Nguyen, M. K. (2010). Real-time EEG-based human emotion recognition and visualization. In International conference on cyberworlds (CW) (pp. 262–269). IEEE.

  17. Ahmadlou, M., Adeli, H., & Adeli, A. (2012). Fractality analysis of frontal brain in major depressive disorder. International Journal of Psychophysiology, 85(2), 206–211.

    Article  Google Scholar 

  18. Raghavendra, B., Dutt, D. N., Halahalli, H. N., & John, J. P. (2009). Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiological Measurement, 30(8), 795.

    Article  Google Scholar 

  19. Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artificial Intelligence in Medicine, 47(3), 263–274.

    Article  Google Scholar 

  20. Boostani, R., Sadatnezhad, K., & Sabeti, M. (2009). An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Systems with Applications, 36(3), 6492–6499.

    Article  Google Scholar 

  21. Wornell, G., & Oppenheim, A. V. (1996). Signal processing with fractals: A wavelet-based approach. Upper Saddle River: Prentice Hall Press.

    Google Scholar 

  22. Sharma, M., Pachori, R. B., & Acharya, U. R. (2017). A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognition Letters, 94, 172–179.

    Article  Google Scholar 

  23. Yeragani, V. K., Sobolewski, E., Jampala, V., Jerald, K., Yeragani, S., & Gina, I. (1998). Fractal dimension and approximate entropy of heart period and heart rate: Awake versus sleep differences and methodological issues. Clinical Science, 95(3), 295–301.

    Article  Google Scholar 

  24. Pradhan, N., & Dutt, D. N. (1993). Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Computers in Biology and Medicine, 23(5), 381–388.

    Article  Google Scholar 

  25. Acharya, R., Bhat, P. S., Kannathal, N., Rao, A., & Lim, C. M. (2005). Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM, 26(2), 133–139.

    Article  Google Scholar 

  26. Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77(5), 339–350.

    Article  MATH  Google Scholar 

  27. Peiris, M., Jones, R., Davidson, P., Bones, P., & Myall, D. (2005) Fractal dimension of the EEG for detection of behavioural microsleeps. In 27th annual international conference of the engineering in medicine and biology society, IEEE-EMBS (pp. 5742–5745). IEEE.

  28. Dash, D. P., & Kolekar, M. H. (2007). Epileptic seizure detection based on EEG signal analysis using hierarchy based Hidden Markov Model. In International conference on advances in computing, communications and informatics (ICACCI) (pp. 1114–1120). IEEE.

  29. Mårtensson, H., Keelan, O., & Ahlström, C. (2018). Driver sleepiness classification based on physiological data and driving performance from real road driving. IEEE Transactions on Intelligent Transportation Systems, 99, 1–10.

    Google Scholar 

  30. Selesnick, I. W., Graber, H. L., Pfeil, D. S., & Barbour, R. L. (2014). Simultaneous low-pass filtering and total variation denoising. IEEE Transactions on Signal Processing, 62(5), 1109–1124.

    Article  MathSciNet  MATH  Google Scholar 

  31. Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.

    Article  Google Scholar 

  32. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. D. (1992). Testing for nonlinearity in time series: The method of surrogate data. Physica D: Nonlinear Phenomena, 58(1–4), 77–94.

    Article  MATH  Google Scholar 

  33. Jelles, B., Van Birgelen, J., Slaets, J., Hekster, R., Jonkman, E., & Stam, C. (1999). Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clinical Neurophysiology, 110(7), 1159–1167.

    Article  Google Scholar 

  34. Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology, 116(10), 2266–2301.

    Article  Google Scholar 

  35. Natarajan, K., Acharya, R., Alias, F., Tiboleng, T., & Puthusserypady, S. K. (2004). Nonlinear analysis of EEG signals at different mental states. BioMedical Engineering OnLine, 3(1), 7.

    Article  Google Scholar 

  36. Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., & Tecchio, F. (2016). Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS ONE, 11(2), e0149587.

    Article  Google Scholar 

  37. Jacob, J. E., Cherian, A., Gopakumar, K., Iype, T., Yohannan, D. G., & Divya, K. P. (2018). Can chaotic analysis of electroencephalogram aid the diagnosis of encephalopathy? Neurology Research International, 2018, 8192820.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisu Elsa Jacob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, J.E., Nair, G.K., Cherian, A. et al. Application of fractal dimension for EEG based diagnosis of encephalopathy. Analog Integr Circ Sig Process 100, 429–436 (2019). https://doi.org/10.1007/s10470-019-01388-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01388-z

Keywords

Navigation