Skip to main content
Log in

Functionality of circuit via modern fractional differentiations

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

A Correction to this article was published on 10 January 2019

This article has been updated

Abstract

The significance of the modern fractional derivatives containing the singular kernel with locality and the non-singular kernel with non-locality have recently diverted the researchers because of the numerical or experimental analyses on the behavior between a system conservative and dissipative and the lack of fractionalized analytic methods. This study investigates the effects of modern fractional differentiation on the RLC electrical circuit via exact analytical approach. The modeling of governing differential equation of RLC electrical circuit has been fractionalized through three types of fractional derivatives namely Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives based on the range as \(0 \le \alpha \le 1,\,\,0 \le \beta \le 1,\,\,0 \le \gamma \le 1\) respectively. The RLC electrical circuit is observed for exponential, periodic and unit step sources via three classified modern fractional derivatives. The exact analytical solutions have been investigated by invoking mathematical Laplace transforms and presented in terms of convolutions product and special function namely Fox-H function. The Comparative mathematical analysis of RLC electrical circuit is based on Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives which exhibit the presence of heterogeneities in the electrical components causing irreversible dissipative effects. Finally, the several similarities and differences for the periodic and exponential sources have been rectified on the basis of the Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives for the current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 10 January 2019

    The article “Functionality of circuit via modern fractional differentiations”, written by Kashif Ali Abro, Ali Asghar Memon and Anwar Ahmed Memon, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on November 2018 with open access.

References

  1. Tsirimokou, G., & Psychalinos, C. (2016). Ultra_ow voltage fractional-order circuits using current mirrors. International Journal of Circuit Theory and Applications, 44(1), 109–126.

    Article  Google Scholar 

  2. Soltan, A., Radwan, A. G., & Soliman, A. M. (2016). Fractional-order mutual inductance: analysis and design. International Journal of Circuit Theory and Applications, 44(1), 85–97.

    Article  Google Scholar 

  3. Cao, J., Syta, A., Litak, G., Zhou, S., Inman, D. J., & Chen, Y. (2015). Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. The European Physical Journal Plus, 130(6), 103.

    Article  Google Scholar 

  4. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Fractional-order models of supercapacitors, batteries and fuel cells: A survey. Materials for Renewable and Sustainable Energy, 4(3), 1–7.

    Article  MATH  Google Scholar 

  5. Elwakil, A. S. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. Circuits and Systems Magazine, IEEE., 10(4), 40–50.

    Article  Google Scholar 

  6. Kumar, S. (2014). A new analytical modelling for fractional telegraph equation via Laplace transform. Applied Mathematical Modelling, 38(13), 3154–3163.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gómez Aguilar, J. F. (2016). Behavior characteristic of a cap-resistor, memcapacitor and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations. Turkish Journal of Electrical Engineering & Computer Sciences, 24(3), 1421–1433.

    Article  Google Scholar 

  8. Podlubny, I. (1999). Fractional differential equations. San Diego, CA: Academic Press.

    MATH  Google Scholar 

  9. Jamil, M., Abro, K. A., & Khan, N. A. (2015). Helices of fractionalized Maxwell fluid. Nonlinear Engineering, 4(4), 191–201.

    Article  Google Scholar 

  10. Abro, K. A., Kashif Ali Abro, Hussain, M., & Baig, M. M. (2016). Impacts of magnetic field on fractionalized viscoelastic fluid. Journal of Applied Environmental and Biological Sciences (JAEBS), 6(9), 84–93.

    MATH  Google Scholar 

  11. Laghari, M. H., Abro, K. A., & Shaikh, A. A. (2017). Helical flows of fractional viscoelastic fluid in a circular pipe. International Journal of Advanced and Applied Sciences, 4(10), 97–105.

    Article  Google Scholar 

  12. Abro, K. A., Hussain, M., & Baig, M. M. (2018). A mathematical analysis of magnetohydrodynamic generalized burger fluid for permeable oscillating plate, Punjab University. Journal of Mathematics, 50(2), 97–111.

    MathSciNet  Google Scholar 

  13. Abro, K. A., Saeed, S. H., Mustapha, N., Khan, I., & Tassadiq, A. (2018). A mathematical study of magnetohydrodynamic casson fluid via special functions with heat and mass transfer embedded in porous plate. Malaysian Journal of Fundamental and Applied Sciences, 14(1), 20–38.

    Google Scholar 

  14. Shakeel, A., Ahmad, S., Khan, H., & Vieru, D. (2016). Solutions with Wright functions for time fractional convection flow near a heated vertical plate, Shakeel, et al. Advances in Difference Equations, 2016, 51. https://doi.org/10.1186/s13662-016-0775-9.

    Article  MATH  Google Scholar 

  15. Caputo, M., & Fabricio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1, 73–85.

    Google Scholar 

  16. Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model. Thermal Science, 20(2), 763–769.

    Article  Google Scholar 

  17. Hristov, J. (2017). Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Thermal Science, 21, 827–839.

    Article  Google Scholar 

  18. Atanganaa, A., & Kocab, I. (2016). On the new fractional derivative and application to nonlinear Baggs and Freedman model. Journal of Nonlinear Sciences and Applications, 9, 2467–2480.

    Article  MathSciNet  Google Scholar 

  19. Atangana, A., & Koca, I. (2016). Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons and Fractals, 1–8.

  20. Al-Mdallal, Q., Abro, K. A., & Khan, I. (2018). Analytical solutions of fractional Walter’s-B fluid with applications. Complexity, Article ID 8918541.

  21. Alkahtani, B. S. T., & Atangana, A. (2016). Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order. Chaos, Solitons & Fractals, 89, 539–546.

    Article  MathSciNet  MATH  Google Scholar 

  22. Nadeem, A. S., Farhad, A., Muhammad, S., Ilyas, K., & Aftab, A. J. (2017). A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. The European Physical Journal Plus, 132, 54. https://doi.org/10.1140/epjp/i2017-11326-y.

    Article  Google Scholar 

  23. Khan, A., Abro, K. A., Tassaddiq, A., & Khan, I. (2017). Atangana-Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: A comparative study. Entropy, 19(8), 1–12.

    Article  MATH  Google Scholar 

  24. Kashif, A. A., Anwar, A. M., & Muhammad, A. U. (2018). A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. The European Physical Journal Plus, 133, 113.

    Article  Google Scholar 

  25. Sheikh, N. A., Ali, F., Khan, I., Gohar, M., & Saqib, M. (2017). On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. The European Physical Journal Plus, 132(12), 540.

    Article  Google Scholar 

  26. Hristov, J. (2017). Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. Frontiers in Fractional Calculus. Sharjah: Bentham Science Publishers, pp. 235–295.

  27. Atangana, A. (2016). On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Applied Mathematics and Computation, 273, 948–956.

    Article  MathSciNet  MATH  Google Scholar 

  28. Abro, K. A., Khan, I., & Tassadiq, A. (2018). Application of Atangana-Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Mathematical Modelling of Natural Phenomenon, 13, 1.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ali, F., Jan, S. A. A., Khan, I., Gohar, M., & Sheikh, N. A. (2016). Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. The European Physical Journal Plus, 131(9), 310.

    Article  Google Scholar 

  30. Abro, K. A., Ilyas, K., & Gomez-Aguilar, J. F. (2018). A mathematical analysis of a circular pipe in rate type fluid via Hankel transform. The European Physical Journal Plus, 133, 397. https://doi.org/10.1140/epjp/i2018-12186-7.

    Article  Google Scholar 

  31. Abro, K. A., & Khan, I. (2017). Analysis of the heat and mass transfer in the MHD flow of a generalized Casson fluid in a porous space via non-integer order derivatives without a singular kernel. Chinese Journal of Physics, 55(4), 1583–1595.

    Article  MathSciNet  Google Scholar 

  32. Kashif, A. A., Irfan, A. A., Sikandar, M. A., & Ilyas, K. (2018). On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non-integer order derivative. Journal of King Saud University–Science. https://doi.org/10.1016/j.jksus.2018.07.012.

    Google Scholar 

  33. Kashif, A. A., & Muhammad, A. S. (2017). Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo-Fabrizoi fractional derivatives, Punjab University. Journal of Mathematics, 49(2), 113–125.

    MathSciNet  MATH  Google Scholar 

  34. Abro, K. A., Rashidi, M. M., Khan, I., Abro, I. A., & Tassadiq, A. (2018). Analysis of Stokes’ second problem for nanofluids using modern fractional derivatives. Journal of Nanofluids, 7, 738–747.

    Article  Google Scholar 

  35. Hammouch, Z., & Mekkaoui, T. (2015). Control of a new chaotic fractional-order system using Mittag-Leffler stability. Nonlinear Studies, 22, 565–577.

    MathSciNet  MATH  Google Scholar 

  36. Hammouch, Z., & Mekkaoui, T. (2014). Chaos synchronization of a fractional nonautonomous System. Nonautonomous Dynamical Systems, 1, 61–71.

    Article  MathSciNet  MATH  Google Scholar 

  37. Atangana, A., & Owolabi, K. M. New numerical approach for fractional differential equations, preprint, arXiv:1707.08177.

  38. Baleanu, D., Caponetto, R., & Machado, J. T. (2016). Challenges in fractional dynamics and control theory. Journal of Vibration and Control, 22, 2151–2152.

    Article  MathSciNet  Google Scholar 

  39. Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. London: Imperial College Press.

    Book  MATH  Google Scholar 

  40. Laghari, M. H., Abro, K. A., & Shaikh, A. A. (2017). Helical flows of fractional viscoelastic fluid in a circular pipe. International Journal of Advanced and Applied Sciences, 4(10), 97–105.

    Article  Google Scholar 

  41. Abro, K. A., Hussain, M., & Baig, M. M. (2017). Slippage of fractionalized Oldroyd-B fluid with magnetic field in porous medium. Progress in Fractional Differentiation and Applications: An international Journal, 3(1), 69–80.

    Article  Google Scholar 

  42. Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73–85.

    Google Scholar 

  43. Abdon, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Science. https://doi.org/10.2298/tsci160111018a.

    Google Scholar 

  44. Abro, K. A., Khan, I., & Tassadiqq, A. (2018). Application of Atangana-Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Mathematical Modelling of Natural Phenomena, 13, 1. https://doi.org/10.1051/mmnp/2018007.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful and grateful to Mehran university of Engineering and Technology, Jamshoro, Pakistan for generous support and facilities of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendix

Appendix

$$\frac{1}{1 + x} = \sum\limits_{n = 0}^{\infty } {\left( { - x} \right)^{n} } ,$$
(25)
$$(a + b)^{m} = \sum\limits_{m = 0}^{\infty } {\frac{{\left( { - 1} \right)^{m} \varGamma (n + 1)}}{m!\varGamma (n - m + 1)}a^{n - m} \,b^{m} } ,$$
(26)
$$L^{ - 1} \left\{ {F(s)G(s)} \right\} = \int\limits_{0}^{t} {f(t)g(t - z)dz} ,$$
(27)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abro, K.A., Memon, A.A. & Memon, A.A. Functionality of circuit via modern fractional differentiations. Analog Integr Circ Sig Process 99, 11–21 (2019). https://doi.org/10.1007/s10470-018-1371-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1371-6

Keywords

Navigation