1.3 V supply voltage, high bandwidth, 100 nA minimum amplitude BiCMOS voltage-controlled current source

Abstract

A voltage-controlled current source in 0.35 μm BiCMOS technology is presented. A linear relationship between the control voltage and the output current is achieved by using first generation current conveyors in configuration of simple voltage-to-current converters. The control voltages of the DC and the AC output currents are completely independent of each other. The current source is intended for the generation of small currents in a sub-microampere range and in a frequency range of a few hundreds of megahertz. The measured and simulated results confirm that the smallest amplitudes of the generated currents are down to 100 nA, with a single supply voltage of 1.3 V. The small-signal bandwidth ranges from 15 up to 900 MHz.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Tadić, N., Marchlewski, A., & Zimmermann, H. (2009). A 122 TΩ Hz transimpedance bandwidth product BiCMOS optical sensor front-end with a 54.7 dB voltage-controlled photo-sensitivity range. Analog Integrated Circuits and Signal Processing, 61, 19–33.

    Article  Google Scholar 

  2. 2.

    Tadić, N., Goll, B., & Zimmermann, H. (2017). Laser diode current driver with (1 − t/T)−1 time dependence in 0.35 μm BiCMOS technology for quantum random number generators. IEEE Transactions on Circuits and Systems, part II: Express: Briefs, 64, 510–514.

    Article  Google Scholar 

  3. 3.

    Nedungadi, A. (1981). Accurate submicroampere controlled current source. Electronics Letters, 17, 320–322.

    Article  Google Scholar 

  4. 4.

    Kalenteridis, V., Vlassis, S., & Siskos, S. (2012). 1.5-V CMOS exponential current generator. Analog Integrated Circuits and Signal Processing, 72, 333–341.

    Article  Google Scholar 

  5. 5.

    Zhang, G., Saw, S., Liu, J., Sterrantino, S., Johnson, D. K., & Jung, S. (2006). An accurate current source with on-chip self-calibration circuits for low-voltage current-mode differential drivers. IEEE Transactions on Circuits and Systems, part I: Regular Papers, 53, 40–47.

    Article  Google Scholar 

  6. 6.

    Serrano-Gotarredona, T., Linares-Barranco, B., & Andreou, A. G. (1999). Very wide range tunable CMOS/bipolar current mirrors with voltage clamped input. IEEE Transactions on Circuits and System, Part: Fundamental Theory and Applicatons, 46, 1398–1407.

    Article  Google Scholar 

  7. 7.

    Dai, S., & Rosenstein, J. K. (2017). A 15-V bidirectional current clamp circuit for integrated patch clamp electrophysiology. IEEE Transactions on Circuits and Systems, Part II: Express Briefs, 64, 1287–1291.

    Article  Google Scholar 

  8. 8.

    Sedra, A. S., & Roberts, G. (1990). Current conveyor theory and practice. In C. Toumazou, F. J. Lidgey, & D. G. Haigh (Eds.), Analogue IC design: The current-mode approach (Chap. 3, pp. 93–126). Stevenage: Peter Peregrinus.

    Google Scholar 

  9. 9.

    Wilson, B. (1989). Performance analysis of current conveyors. Electronics Letters, 25, 1596–1598.

    Article  Google Scholar 

  10. 10.

    Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits (4th ed.). New York: Wiley.

    Google Scholar 

  11. 11.

    Carusone, T. C., Johns, D., & Martin, K. (2012). Analog integrated circuit design (2nd ed.). New York: Wiley.

    Google Scholar 

  12. 12.

    de Wit, M. (1995). Temperature independent resistor. U.S. Patent 5448103 A.

  13. 13.

    Gregoire, B. R., & Moon, U.-K. (2007). Process-independent resistor temperature-coefficients using series/parallel and parallel/series composite resistors. In Proceedings of international symposium on circuits and systems (pp. 2826–2829).

  14. 14.

    Chiang, Y.-H., & Liu, S.-I. (2013). A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation. IEEE Transactions on Circuits and Systems, part II: Express Briefs, 60, 837–841.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikša Tadić.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tadić, N., Dervić, A., Erceg, M. et al. 1.3 V supply voltage, high bandwidth, 100 nA minimum amplitude BiCMOS voltage-controlled current source. Analog Integr Circ Sig Process 98, 209–219 (2019). https://doi.org/10.1007/s10470-018-1360-9

Download citation

Keywords

  • AC current gain
  • BiCMOS analog integrated circuits
  • Current conveyor
  • DC current gain
  • Low voltage design
  • Voltage-controlled current source