Skip to main content

A novel Schmitt trigger and its application using a single four terminal floating nullor (FTFN)

Abstract

In this research paper, a simple clock wise and counter clock wise Schmitt trigger employing single four terminal floating nullor (FTFN) with two external resistors is presented. The proposed Schmitt trigger avails CMOS based FTFN and it is extended for the application as a square and triangular wave generator, by adding an external capacitor to it. In addition, the proposed waveform generator provides independent tunability of amplitude of square wave by implementing the passive resistors using MOS transistors which make the circuit to be integrated fully. Finally, the verification of the proposed design is verified using PSPICE to justify the theoretical analysis. Also, post layout simulation and the experimental verification using commercially available current feedback operational amplifier named as ICAD844 based implementation for FTFN are included to confirm the reliability of the circuit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Sedra, A., & Smith, K. C. (1998). Microelectronic circuits (4th ed.). Oxford: Oxford University Press. ISBN 9780195116632.

    Google Scholar 

  2. 2.

    Onomi, T. (2016). Experimental demonstration and performance estimation of a new relaxation oscillator using a superconducting Schmitt trigger inverter. Physics Procedia, 81, 141–144. https://doi.org/10.1016/j.phpro.2016.04.030.

    Article  Google Scholar 

  3. 3.

    Patel, D. K. (2016). Function generator using current conveyor (CCII). International Journal of Computer Applications, 147(7), 1–4.

    Article  Google Scholar 

  4. 4.

    Kar, S. K., & Sen, S. (2011). Tunable square-wave generator for integrated sensor applications. IEEE Transactions on Instrumentation and Measurement, 60(10), 3369–3375. https://doi.org/10.1109/TIM.2011.2128490.

    Article  Google Scholar 

  5. 5.

    Chien, H. C., & Lo, Y. K. (2011). Design and implementation of monostable multivibrators employing differential voltage current conveyors. Microelectronics Journal, 42(10), 1107–1115. https://doi.org/10.1016/j.mejo.2011.07.005.

    Article  Google Scholar 

  6. 6.

    Ranjan, R. K., Mazumdar, K., Pal, R., & Chandra, S. (2017). Generation of square and triangular wave with independently controllable frequency and amplitude using OTAs only and its application in PWM. Analog Integrated Circuits and Signal Processing, 92(1), 15–27. https://doi.org/10.1007/s10470-017-0971-x.

    Article  Google Scholar 

  7. 7.

    Newsom, R. L., Dillard, W. C., & Nelms, R. M. (2002). Digital power-factor correction for a capacitor-charging power supply. IEEE Transactions on Industrial Electronics, 49(5), 1146–1153. https://doi.org/10.1109/TIE.2002.803240.

    Article  Google Scholar 

  8. 8.

    Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1990). Analogue IC design: The current mode approach. London: Peter Peregrinus Ltd. ISBN 0863412971.

    Google Scholar 

  9. 9.

    Sedra, A., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134. https://doi.org/10.1109/TCT.1970.1083067.

    Article  Google Scholar 

  10. 10.

    Fabre, A. (1995). Third generation current conveyor: A new helpful active element. Electronics Letters, 31(5), 338–339. https://doi.org/10.1049/el:19950282.

    Article  Google Scholar 

  11. 11.

    Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2), 82–91. https://doi.org/10.1109/81.486430.

    Article  Google Scholar 

  12. 12.

    Reetesh, V. G., Mahendra, A. G., & Vrushali, G. N. (2012). Design and analysis of high performance operationla transconductance amplifier. International Journal of Scientific and Research Publications, 2(8), 1–5.

    Article  Google Scholar 

  13. 13.

    Elwan, H. O., & Soliman, A. M. (1997). Novel CMOS differential voltage current conveyor and its applications. IEE Proceedings-Circuits, Devices and Systems, 144(3), 195–200. https://doi.org/10.1049/ip-cds:19971081.

    Article  Google Scholar 

  14. 14.

    Chiu, W., Liu, S.-I., Tsao, H. W., & Chen, J. J. (1996). CMOS differential difference current conveyors and their applications. IEE Proceedings-Circuits, Devices and Systems, 143(2), 91–96. https://doi.org/10.1049/ip-cds:19960223.

    Article  MATH  Google Scholar 

  15. 15.

    Gupta, S. S., & Senani, R. (2001). CMOS differential difference current conveyors and their applications. IEE Proceedings-Circuits, Devices and Systems, 148(6), 335–336. https://doi.org/10.1049/ip-cds:20010623.

    Article  Google Scholar 

  16. 16.

    Zeki, A., & Toker, A. (2002). The dual-X current conveyor (DXCCII): A new active device for tunable continuous-time filters. International Journal of Electronics, 89(12), 913–923. https://doi.org/10.1080/0020721031000120461.

    Article  Google Scholar 

  17. 17.

    Sedra, A. S., Roberts, G. W., & Gohh, F. (1990). The current conveyor: History, progress and new results. IEE Proceedings-Circuits, Devices and Systems, 137(2), 78–87. https://doi.org/10.1049/ip-g-2.1990.0015.

    Article  Google Scholar 

  18. 18.

    Senani, R. (1987). A novel application of four-terminal floating nullors. Proceedings of the IEE, 75(11), 1544–1546. https://doi.org/10.1109/PROC.1987.13919.

    Article  Google Scholar 

  19. 19.

    Higashimura, M. (1991). Current-mode allpass filter using FTFN with grounded capacitor. Electronics Letters, 27(13), 1182–1183. https://doi.org/10.1049/el:199110737.

    Article  Google Scholar 

  20. 20.

    Huijsing, J. H. (1990). Operational floating amplifier. IEE Proceedings G-Circuits, Devices and Systems, 137(2), 131–136. https://doi.org/10.1049/ip-g-2.1990.0021.

    Article  Google Scholar 

  21. 21.

    Tarunkumar, H., Ranjan, A., Perumallu, S., & Pheiroijam, N. M. (2017). Four input single output based third order universal filter using four terminal floating nullor. Analog Integrated Circuits and Signal Processing, 93(1), 87–98. https://doi.org/10.1007/s10470-017-1018-z.

    Article  Google Scholar 

  22. 22.

    Cam, U., Toker, A., Cicekoglu, O., & Kuntman, H. (2000). Current-mode high output impedance sinusoidal oscillator configuration employing single FTFN. Analog Integrated Circuits and Signal Processing, 24(3), 231–238.

    Article  Google Scholar 

  23. 23.

    Kilic, R., Cam, U., Alci, M., Kuntman, H., & Uzunhisarcikli, E. (2004). Realization of inductorless Chua’s circuit using FTFN-based nonlinear resistor and inductance simulator. Frequenz, 58(1–2), 37–40. https://doi.org/10.1515/FREQ.2004.58.1-2.37.

    Google Scholar 

  24. 24.

    Cam, U., Cicekoglu, O., & Kuntman, O. (2000). Universal series and parallel immittance simulators using four terminal floating nullors. Analog Integrated Circuits and Signal Processing, 25(1), 59–66. https://doi.org/10.1023/A:1008345903584.

    Article  Google Scholar 

  25. 25.

    Srinivasulu, A. (2011). A novel current conveyor-based Schmitt trigger and its application as a relaxation oscillator. International Journal of Circuit Theory and Applications, 39(6), 679–686. https://doi.org/10.1002/cta.669.

    Article  Google Scholar 

  26. 26.

    Diutaldo, G., Palumbo, G., & Pennisi, S. (1995). A Schmitt trigger by means of a ccii+. International Journal of Circuit Theory and Applications, 23(2), 161–165. https://doi.org/10.1002/cta.4490230207.

    Article  Google Scholar 

  27. 27.

    Re, S. D., Marcellis A. D., Ferri, G., & Stornelli, V. (2007). Low voltage integrated astable multivibrator based on a single CCII. In Proceedings of the conference on reasearch in microelectronics and electronics, PRIME 2007. Ph. D. Bordeaux (France) (pp. 177–180). https://doi.org/10.1109/rme.2007.4401841.

  28. 28.

    De Marcellis, A., Di Carlo, C., Ferri, G., & Stornelli, V. (2011). A CCII-based wide frequency range square waveform generator. International Journal of Circuit Theory and Applications, 41(1), 1–13. https://doi.org/10.1002/cta.781.

    Google Scholar 

  29. 29.

    Chung, W. S., Kim, H., & Cha, H. W. (2005). Triangular/square-wave generator with independently controllable frequency and amplitude. IEEE Transactions on Instrumentation and Measurement, 54(1), 105–109. https://doi.org/10.1109/TIM.2004.840238.

    Article  Google Scholar 

  30. 30.

    Lo, Y. K., Chien, H. C., & Chiu, H. J. (2010). Current-input OTRA Schmitt trigger with dual hysteresis modes. International Journal of Circuit Theory and Applications, 38(7), 739–746. https://doi.org/10.1002/cta.584.

    Article  MATH  Google Scholar 

  31. 31.

    Kumar, A., & Chaturvedi, B. (2017). Novel electronically controlled current-mode Schmitt trigger based on single active element. AEU-International Journal of Electronics and Communications, 82, 160–166. https://doi.org/10.1016/j.aeue.2017.08.007.

    Article  Google Scholar 

  32. 32.

    Minaei, S., & Yuce, E. (2012). A simple Schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circuits, Systems and Signal Processing, 31(3), 877–888. https://doi.org/10.1007/s00034-011-9373-y.

    Article  Google Scholar 

  33. 33.

    Kumar, A., & Chaturvedi, B. (2017). Fully electronically controllable Schmitt trigger circuit with dual hysteresis. Electronic Letters, 53(7), 459–461. https://doi.org/10.1049/el.2016.4770.

    Article  Google Scholar 

  34. 34.

    Silapan, P., & Siripruchyanun, M. (2011). Fully and electronically controllable current-mode Schmitt triggers employing only single MO-CCCDTA and their applications. Analog Integrated Circuits and Signal Processing, 68(1), 111–128. https://doi.org/10.1007/s10470-010-9593-2.

    Article  Google Scholar 

  35. 35.

    Pal, R., Pandey, R., Pandey, N., & Tiwari, R. C. (2015). Single CDBA based voltage mode bistable multivibrator and its applications. Circuits and Systems, 6(11), 237–251. https://doi.org/10.4236/cs.2015.611024.

    Article  Google Scholar 

  36. 36.

    Siripruchyanun, M., Satthaphol, P., & Payakkakul, K. (2015). A simple fully controllable Schmitt trigger with electronic method using VDTA. Applied Mechanics and Materials, 781(1), 180–183. https://doi.org/10.4028/www.scientific.net/AMM.781.180.

    Article  Google Scholar 

  37. 37.

    Marcellis, A. D., Ferri, G., & Mantenuto, P. (2016). A CCII-based non-inverting Schmitt trigger and its application as astable multivibrator for capacitive sensor interfacing. International Journal of Circuit Theory and Applications, 45(8), 1060–1076. https://doi.org/10.1002/cta.2268.

    Article  Google Scholar 

  38. 38.

    Liu, S. I. (1997). Single-resistance-controlled sinusoidal oscillator using two FTFNs. Electronics Letters, 33(14), 1185–1186. https://doi.org/10.1049/ei:19970833.

    Article  Google Scholar 

  39. 39.

    Sayinger, M., & Kuntman, H. (2007). FTFN based realization of current-mode 4th order low-pass filter for video band applications. In IEEE 15th signal processing and communications applications (pp. 1–4). https://doi.org/10.1109/siu.2007.4298854

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashish Ranjan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Pamu, H. & Tarunkumar, H. A novel Schmitt trigger and its application using a single four terminal floating nullor (FTFN). Analog Integr Circ Sig Process 96, 455–467 (2018). https://doi.org/10.1007/s10470-018-1229-y

Download citation

Keywords

  • Schmitt trigger
  • Four terminal floating nullor (FTFN)
  • Square and triangular wave generator
  • Pulse width modulator (PWM)