Advertisement

An accurate digital baseband predistorter design for linearization of RF power amplifiers by a genetic algorithm based Hammerstein structure

  • Ahmad Rahati Belabad
  • Saeed Sharifian
  • Seyed Ahmad Motamedi
Article
  • 116 Downloads

Abstract

In this paper, a novel digital predistorter design based on the Hammerstein structure is proposed in order to linearize radio frequency power amplifiers. A genetic algorithm optimization method has been proposed to accurately identify the coefficients of a Wiener model for the power amplifier. Digital predistorter design based on the proposed Hammerstein model has been carried out according to the accurate Wiener model. The validation of the suggested model is carried out using the simulation of the power amplifier and the digital predistortion excited by 64QAM signals in the advanced design system software. According to the simulation results, the criterion of an adjacent channel power ratio decreased by about 16 dB. The simulation results show the adjacent channel power ratio of almost − 46 dBc. In order to assess the feasibility of the proposed predistorter, it is completely implemented in the Kintex FPGA using Vivado HLS. This proposed model enables a more accurate modeling of nonlinear distortion and memory effects compared to the previous linearization methods. This paper presents the new linearization method using the genetic algorithm based Hammerstein structure.

Keywords

Genetic algorithm (GA) Power amplifiers (PAs) Wiener and Hammerstein model Digital predistortion (DPD) Linearization Memory effect Adjacent channel power ratio (ACPR) 

References

  1. 1.
    Khan, M. A., Aref, A. F., Tarar, M. M., & Negra, R. (2016). Analysis and design of class-O RF power amplifiers for wireless communication systems. Analog Integrated Circuits and Signal Processing, 89(2), 317–325.CrossRefGoogle Scholar
  2. 2.
    Razavi, B. (2011). RF microelectronics (2nd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  3. 3.
    Belabad, A. R., Masoumi, N., & Ashtiani, S. J. (2013). A fully integrated 2.4 GHz CMOS high power amplifier using parallel class A&B power amplifier and power-combining transformer for WiMAX application. AEU: International Journal of Electronics and Communications, 67(12), 1030–1037.Google Scholar
  4. 4.
    Belabad, A. R., Masoumi, N., & Ashtiani, S. J. (2012). A 33.2 dBm CMOS RF power amplifier using a novel on-chip transformer power combiner for 4G WiMAX applications. In Sixth international symposium on telecommunications (IST), Tehran, Iran (pp. 343–347).Google Scholar
  5. 5.
    Degani, O., Cossoy, F., Shahaf, S., Cohen, E., Kravtsov, V., Sendik, O., et al. (2010). A 90-nm CMOS power amplifier for 802.16e (WiMAX) applications. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1431–1437.CrossRefGoogle Scholar
  6. 6.
    Qian, H., Huang, H., & Yao, S. (2013). A general adaptive digital predistortion architecture for stand-alone RF power amplifiers. IEEE Transactions on Broadcasting, 59(3), 528–538.CrossRefGoogle Scholar
  7. 7.
    Hamm, O., Kwan, A., & Ghannouchi, F. M. (2013). Bandwidth and power scalable digital predistorter for compensating dynamic distortions in RF power amplifiers. IEEE Transactions on Broadcasting, 59(3), 520–527.CrossRefGoogle Scholar
  8. 8.
    Zhu, A., Draxler, P. J., Yan, J. J., Brazil, T. J., Kimball, D. F., & Asbeck, P. M. (2008). Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series. IEEE Transactions on Microwave Theory and Techniques, 56(7), 1524–1534.CrossRefGoogle Scholar
  9. 9.
    Marsalek, R. (2003). Contributions to the power amplifier linearization using digital baseband adaptive predistortion. Ph.D. dissertation, Universite de Marne La Vallee.Google Scholar
  10. 10.
    Jung, S., Park, H., Kim, M., Ahn, G., Van, J., Hwangbo, H., et al. (2007). A new envelope predistorter with envelope delay taps for memory effect compensation. IEEE Transactions on Microwave Theory and Techniques, 55(1), 52–59.CrossRefGoogle Scholar
  11. 11.
    Cha, J., Yi, J., Kim, J., & Kim, B. (2004). Optimum design of a predistortion RF power amplifier for multicarrier WCDMA applications. IEEE Transactions on Microwave Theory and Techniques, 52(2), 655–663.CrossRefGoogle Scholar
  12. 12.
    Ren, Z.-X., Zhang, K.-F., Liu, L.-Q., Chen, X.-Q., Liu, D.-S., Liu, Z.-L., et al. (2015). A 2.45-GHz W-level output power CMOS power amplifier with adaptive bias and integrated diode linearizer. Microelectronics Journal, 46(5), 327–332.CrossRefGoogle Scholar
  13. 13.
    Lim, K., Ahn, G., Jung, S., Park, H., Kim, M., Van, J., et al. (2009). A 60 watt multi-carrier WCDMA power amplifier using an RF predistorter. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(4), 265–269.Google Scholar
  14. 14.
    Yi, J., Yang, Y., Park, M. G., Kang, W. W., & Kim, B. (2000). Analog predistortion linearizer for high-power RF amplifiers. IEEE Transactions on Microwave Theory and Techniques, 48(12), 2709–2713.CrossRefGoogle Scholar
  15. 15.
    Nojima, T., & Konno, T. (1985). Cuber predistortion linearizer for relay equipment in 800 MHz band land mobile telephone system. IEEE Transactions on Vehicular Technology, 34(4), 169–177.CrossRefGoogle Scholar
  16. 16.
    Younes, M., & Ghannouchi, F. M. (2012). An accurate predistorter based on a feedforward Hammerstein structure. IEEE Transactions on Broadcasting, 58(3), 454–461.CrossRefGoogle Scholar
  17. 17.
    Karimi, G., & Lotfi, A. (2013). An analog/digital pre-distorter using particle swarm optimization for RF power amplifiers. AEU: International Journal of Electronics and Communications, 67, 723–728.Google Scholar
  18. 18.
    Belabad, A. R., Motamedi, S. A., & Sharifian, S. (2017). An adaptive digital predistortion for compensating nonlinear distortions in RF power amplifier with memory effects. INTEGRATION, the VLSI Journal, 57, 8.Google Scholar
  19. 19.
    Cho, Y., Lee, J., Jin, S., Park, B., Moon, J., Kim, J. S., et al. (2014). Fully integrated CMOS saturated power amplifier with simple digital predistortion. IEEE Microwave and Wireless Components Letters, 24(8), 533–535.CrossRefGoogle Scholar
  20. 20.
    Muhonen, K. J., Kavehrad, M., & Krishnamoorthy, R. (2000). Look-up table techniques for adaptive digital predistortion: A development and comparison. IEEE Transactions on Vehicular Technology, 49(9), 1995–2002.CrossRefGoogle Scholar
  21. 21.
    Kenney, J. S., Woo, W., Ding, L., Raich, R., Ku, H., & Zhou, G. T. (2001) The impact of memory effects on predistortion linearization of RF power amplifiers. In Proceedings of the 8th international symposium on Microwave and Optical Technology (pp. 189–193).Google Scholar
  22. 22.
    Schetzen, M. (1989). The Volterra and Wiener theories of nonlinear systems. New York: Wiley.zbMATHGoogle Scholar
  23. 23.
    Guan, L., & Zhu, A. (2010). Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(4), 866–872.CrossRefGoogle Scholar
  24. 24.
    Liu, T., Boumaiza, S., & Ghannouchi, F. M. (2005). Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters. IEEE Transactions on Microwave Theory and Techniques, 53(11), 3578–3587.CrossRefGoogle Scholar
  25. 25.
    Liu, T., Boumaiza, S., & Ghannouchi, F. M. (2006). Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1340–1349.CrossRefGoogle Scholar
  26. 26.
    Ding, L., Zhou, G. T., Morgan, D. R., Ma, Z., Kenney, J. S., Kim, J., et al. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.CrossRefGoogle Scholar
  27. 27.
    Moon, J., & Kim, B. (2011). Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Transactions on Microwave Theory and Techniques, 59(4), 924–933.CrossRefGoogle Scholar
  28. 28.
    Wu, Y., & Liu, W. (2013). Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wireless Sensor Systems, 3, 112–118.CrossRefGoogle Scholar
  29. 29.
    Patra, S. S. M., Roy, K., Banerjee, S., & Vidyarthi, D. P. (2006). Improved genetic algorithm for channel allocation with channel borrowing in mobile computing. IEEE Transactions on Mobile Computing, 5, 884–892.CrossRefGoogle Scholar
  30. 30.
    Sperlich, R., Sills, J. A., & Kenney, J. S. (2005). Closed-loop pigtail predistortion with memory effects using digital predistortion and genetic algorithms. In IEEE MTT-S international microwave symposium digest (pp. 1557–1560).Google Scholar
  31. 31.
    Wang, Y., Xie, L., Wang, Z., Chen, H., & Wang, K. (2010). An efficient algebraic predistorter for compensating the nonlinearity of memory amplifiers. In International conference on communications, circuits and systems.Google Scholar
  32. 32.
    Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29(11), 1715–1720.CrossRefGoogle Scholar
  33. 33.
    Teikari, I. (2008). Digital predistortion linearization methods for RF power amplifiers. Ph.D. thesis, Helsinki University of Technology.Google Scholar
  34. 34.
    Falconor, D., Kolze, T., Leiba, Y., & Leibetreu, J. (2000). IEEE 802.16. Proposed system impairment models, slide supplement. IEEE technical report.Google Scholar
  35. 35.
    Hagenblad, A., Ljung, L., & Wills, A. (2008). Maximum likelihood identification of Wiener models. Automatic, 44(11), 2697–2705.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (pp. 1942–1944).Google Scholar
  37. 37.
    Ho, S. L., Yang, S., Ni, G., Lo, E. W. C., & Wong, H. C. (2005). A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions on Magnetics, 41(5), 1756–1759.CrossRefGoogle Scholar
  38. 38.
    Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.CrossRefGoogle Scholar
  39. 39.
    Belabad, A. R., Iranpour, E., & Sharifian, S. (2015). FPGA implementation of a Hammerstein based digital predistorter for linearizing RF power amplifiers with memory effects. Amirkabir International Journal of Electrical & Electronics Engineering, 49(2), 9–17.Google Scholar
  40. 40.
    Jose, S. (2015). Vivado design suite user guide: High-level synthesis. California: Xilinx.Google Scholar
  41. 41.
    Yen, C.-C., & Chuang, H.-R. (2003). A 0.25-μm 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer. IEEE Microwave and Wireless Components Letters, 13(2), 45–47.CrossRefGoogle Scholar
  42. 42.
    Seo, M., Kim, K., Kim, M., Kim, H., Jeon, J., Park, M.-K., et al. (2011). Ultrabroadband linear power amplifier using a frequency-selective analog predistorter. IEEE Transactions on Circuits and Systems II, 58(5), 264–268.CrossRefGoogle Scholar
  43. 43.
    Garcia-Hernandez, M., Prieto-Guerrero, A., Laguna-Sanchez, G., Mendoza-Valencia, P. J., & Sanchez-Garcia, J. (2012). Digital predistorter based on Volterra series for nonlinear power amplifier applied to OFDM systems using adaptive algorithms. International Meeting of Electrical Engineering Research, 35, 118–125.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmad Rahati Belabad
    • 1
  • Saeed Sharifian
    • 1
  • Seyed Ahmad Motamedi
    • 1
  1. 1.Department of Electrical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations