Skip to main content

Advertisement

Log in

An accurate digital baseband predistorter design for linearization of RF power amplifiers by a genetic algorithm based Hammerstein structure

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel digital predistorter design based on the Hammerstein structure is proposed in order to linearize radio frequency power amplifiers. A genetic algorithm optimization method has been proposed to accurately identify the coefficients of a Wiener model for the power amplifier. Digital predistorter design based on the proposed Hammerstein model has been carried out according to the accurate Wiener model. The validation of the suggested model is carried out using the simulation of the power amplifier and the digital predistortion excited by 64QAM signals in the advanced design system software. According to the simulation results, the criterion of an adjacent channel power ratio decreased by about 16 dB. The simulation results show the adjacent channel power ratio of almost − 46 dBc. In order to assess the feasibility of the proposed predistorter, it is completely implemented in the Kintex FPGA using Vivado HLS. This proposed model enables a more accurate modeling of nonlinear distortion and memory effects compared to the previous linearization methods. This paper presents the new linearization method using the genetic algorithm based Hammerstein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Khan, M. A., Aref, A. F., Tarar, M. M., & Negra, R. (2016). Analysis and design of class-O RF power amplifiers for wireless communication systems. Analog Integrated Circuits and Signal Processing, 89(2), 317–325.

    Article  Google Scholar 

  2. Razavi, B. (2011). RF microelectronics (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  3. Belabad, A. R., Masoumi, N., & Ashtiani, S. J. (2013). A fully integrated 2.4 GHz CMOS high power amplifier using parallel class A&B power amplifier and power-combining transformer for WiMAX application. AEU: International Journal of Electronics and Communications, 67(12), 1030–1037.

    Google Scholar 

  4. Belabad, A. R., Masoumi, N., & Ashtiani, S. J. (2012). A 33.2 dBm CMOS RF power amplifier using a novel on-chip transformer power combiner for 4G WiMAX applications. In Sixth international symposium on telecommunications (IST), Tehran, Iran (pp. 343–347).

  5. Degani, O., Cossoy, F., Shahaf, S., Cohen, E., Kravtsov, V., Sendik, O., et al. (2010). A 90-nm CMOS power amplifier for 802.16e (WiMAX) applications. IEEE Transactions on Microwave Theory and Techniques, 58(5), 1431–1437.

    Article  Google Scholar 

  6. Qian, H., Huang, H., & Yao, S. (2013). A general adaptive digital predistortion architecture for stand-alone RF power amplifiers. IEEE Transactions on Broadcasting, 59(3), 528–538.

    Article  Google Scholar 

  7. Hamm, O., Kwan, A., & Ghannouchi, F. M. (2013). Bandwidth and power scalable digital predistorter for compensating dynamic distortions in RF power amplifiers. IEEE Transactions on Broadcasting, 59(3), 520–527.

    Article  Google Scholar 

  8. Zhu, A., Draxler, P. J., Yan, J. J., Brazil, T. J., Kimball, D. F., & Asbeck, P. M. (2008). Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series. IEEE Transactions on Microwave Theory and Techniques, 56(7), 1524–1534.

    Article  Google Scholar 

  9. Marsalek, R. (2003). Contributions to the power amplifier linearization using digital baseband adaptive predistortion. Ph.D. dissertation, Universite de Marne La Vallee.

  10. Jung, S., Park, H., Kim, M., Ahn, G., Van, J., Hwangbo, H., et al. (2007). A new envelope predistorter with envelope delay taps for memory effect compensation. IEEE Transactions on Microwave Theory and Techniques, 55(1), 52–59.

    Article  Google Scholar 

  11. Cha, J., Yi, J., Kim, J., & Kim, B. (2004). Optimum design of a predistortion RF power amplifier for multicarrier WCDMA applications. IEEE Transactions on Microwave Theory and Techniques, 52(2), 655–663.

    Article  Google Scholar 

  12. Ren, Z.-X., Zhang, K.-F., Liu, L.-Q., Chen, X.-Q., Liu, D.-S., Liu, Z.-L., et al. (2015). A 2.45-GHz W-level output power CMOS power amplifier with adaptive bias and integrated diode linearizer. Microelectronics Journal, 46(5), 327–332.

    Article  Google Scholar 

  13. Lim, K., Ahn, G., Jung, S., Park, H., Kim, M., Van, J., et al. (2009). A 60 watt multi-carrier WCDMA power amplifier using an RF predistorter. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(4), 265–269.

    Google Scholar 

  14. Yi, J., Yang, Y., Park, M. G., Kang, W. W., & Kim, B. (2000). Analog predistortion linearizer for high-power RF amplifiers. IEEE Transactions on Microwave Theory and Techniques, 48(12), 2709–2713.

    Article  Google Scholar 

  15. Nojima, T., & Konno, T. (1985). Cuber predistortion linearizer for relay equipment in 800 MHz band land mobile telephone system. IEEE Transactions on Vehicular Technology, 34(4), 169–177.

    Article  Google Scholar 

  16. Younes, M., & Ghannouchi, F. M. (2012). An accurate predistorter based on a feedforward Hammerstein structure. IEEE Transactions on Broadcasting, 58(3), 454–461.

    Article  Google Scholar 

  17. Karimi, G., & Lotfi, A. (2013). An analog/digital pre-distorter using particle swarm optimization for RF power amplifiers. AEU: International Journal of Electronics and Communications, 67, 723–728.

    Google Scholar 

  18. Belabad, A. R., Motamedi, S. A., & Sharifian, S. (2017). An adaptive digital predistortion for compensating nonlinear distortions in RF power amplifier with memory effects. INTEGRATION, the VLSI Journal, 57, 8.

    Google Scholar 

  19. Cho, Y., Lee, J., Jin, S., Park, B., Moon, J., Kim, J. S., et al. (2014). Fully integrated CMOS saturated power amplifier with simple digital predistortion. IEEE Microwave and Wireless Components Letters, 24(8), 533–535.

    Article  Google Scholar 

  20. Muhonen, K. J., Kavehrad, M., & Krishnamoorthy, R. (2000). Look-up table techniques for adaptive digital predistortion: A development and comparison. IEEE Transactions on Vehicular Technology, 49(9), 1995–2002.

    Article  Google Scholar 

  21. Kenney, J. S., Woo, W., Ding, L., Raich, R., Ku, H., & Zhou, G. T. (2001) The impact of memory effects on predistortion linearization of RF power amplifiers. In Proceedings of the 8th international symposium on Microwave and Optical Technology (pp. 189–193).

  22. Schetzen, M. (1989). The Volterra and Wiener theories of nonlinear systems. New York: Wiley.

    MATH  Google Scholar 

  23. Guan, L., & Zhu, A. (2010). Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(4), 866–872.

    Article  Google Scholar 

  24. Liu, T., Boumaiza, S., & Ghannouchi, F. M. (2005). Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters. IEEE Transactions on Microwave Theory and Techniques, 53(11), 3578–3587.

    Article  Google Scholar 

  25. Liu, T., Boumaiza, S., & Ghannouchi, F. M. (2006). Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters. IEEE Transactions on Microwave Theory and Techniques, 54(4), 1340–1349.

    Article  Google Scholar 

  26. Ding, L., Zhou, G. T., Morgan, D. R., Ma, Z., Kenney, J. S., Kim, J., et al. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.

    Article  Google Scholar 

  27. Moon, J., & Kim, B. (2011). Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Transactions on Microwave Theory and Techniques, 59(4), 924–933.

    Article  Google Scholar 

  28. Wu, Y., & Liu, W. (2013). Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks. IET Wireless Sensor Systems, 3, 112–118.

    Article  Google Scholar 

  29. Patra, S. S. M., Roy, K., Banerjee, S., & Vidyarthi, D. P. (2006). Improved genetic algorithm for channel allocation with channel borrowing in mobile computing. IEEE Transactions on Mobile Computing, 5, 884–892.

    Article  Google Scholar 

  30. Sperlich, R., Sills, J. A., & Kenney, J. S. (2005). Closed-loop pigtail predistortion with memory effects using digital predistortion and genetic algorithms. In IEEE MTT-S international microwave symposium digest (pp. 1557–1560).

  31. Wang, Y., Xie, L., Wang, Z., Chen, H., & Wang, K. (2010). An efficient algebraic predistorter for compensating the nonlinearity of memory amplifiers. In International conference on communications, circuits and systems.

  32. Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29(11), 1715–1720.

    Article  Google Scholar 

  33. Teikari, I. (2008). Digital predistortion linearization methods for RF power amplifiers. Ph.D. thesis, Helsinki University of Technology.

  34. Falconor, D., Kolze, T., Leiba, Y., & Leibetreu, J. (2000). IEEE 802.16. Proposed system impairment models, slide supplement. IEEE technical report.

  35. Hagenblad, A., Ljung, L., & Wills, A. (2008). Maximum likelihood identification of Wiener models. Automatic, 44(11), 2697–2705.

    Article  MathSciNet  MATH  Google Scholar 

  36. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (pp. 1942–1944).

  37. Ho, S. L., Yang, S., Ni, G., Lo, E. W. C., & Wong, H. C. (2005). A particle swarm optimization-based method for multiobjective design optimizations. IEEE Transactions on Magnetics, 41(5), 1756–1759.

    Article  Google Scholar 

  38. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4, 65–85.

    Article  Google Scholar 

  39. Belabad, A. R., Iranpour, E., & Sharifian, S. (2015). FPGA implementation of a Hammerstein based digital predistorter for linearizing RF power amplifiers with memory effects. Amirkabir International Journal of Electrical & Electronics Engineering, 49(2), 9–17.

    Google Scholar 

  40. Jose, S. (2015). Vivado design suite user guide: High-level synthesis. California: Xilinx.

    Google Scholar 

  41. Yen, C.-C., & Chuang, H.-R. (2003). A 0.25-μm 20-dBm 2.4-GHz CMOS power amplifier with an integrated diode linearizer. IEEE Microwave and Wireless Components Letters, 13(2), 45–47.

    Article  Google Scholar 

  42. Seo, M., Kim, K., Kim, M., Kim, H., Jeon, J., Park, M.-K., et al. (2011). Ultrabroadband linear power amplifier using a frequency-selective analog predistorter. IEEE Transactions on Circuits and Systems II, 58(5), 264–268.

    Article  Google Scholar 

  43. Garcia-Hernandez, M., Prieto-Guerrero, A., Laguna-Sanchez, G., Mendoza-Valencia, P. J., & Sanchez-Garcia, J. (2012). Digital predistorter based on Volterra series for nonlinear power amplifier applied to OFDM systems using adaptive algorithms. International Meeting of Electrical Engineering Research, 35, 118–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rahati Belabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahati Belabad, A., Sharifian, S. & Motamedi, S.A. An accurate digital baseband predistorter design for linearization of RF power amplifiers by a genetic algorithm based Hammerstein structure. Analog Integr Circ Sig Process 95, 231–247 (2018). https://doi.org/10.1007/s10470-018-1173-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1173-x

Keywords

Navigation