Skip to main content

Advertisement

Log in

A power efficient, differential multichannel adiabatic electrode stimulator for deep brain stimulation

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

A Correction to this article was published on 12 May 2018

This article has been updated

Abstract

An energy efficient multichannel adiabatic switching based stimulator with high driving current capability (up to 10 mA) is presented in this paper. The high output current is needed especially for deep brain stimulation system. The stored energy in the electrode-tissue capacitor in the first phase of stimulation will be mostly recovered in the second phase. The proposed stimulator consists of a dynamic differential power supply which makes the biphasic stimulation possible without the need of H-bridge or midrail power supply in the output stage. The stimulation current is directly sensed and controlled by a current-controlled loop which makes the stimulation safe and flexible. In the proposed design, the simultaneous multichannel stimulation with independent electrode-tissue characteristics is possible by making use of the proposed simple digital control scheme. This feature is attained without the need of duplicating the inductors for each channel. A self-voltage-boosting bootstrap circuit is also introduced in order to drive the power MOSFETS of the power supply efficiently. The stimulator is simulated in a 0.18 µ, 32 V HV-CMOS technology for evaluating the effectiveness of the system. The simulation results show up to 1.5–2X efficiency improvement compared to the conventional constant current stimulators with adaptive power supply and around 5–10% efficiency improvement relative to the most recent state-of-the-art switching stimulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Change history

  • 12 May 2018

    The original version of the article unfortunately contained an error in figure. The actual size of Fig. 11 in the published paper did not appear completely. The complete view of Fig. 11 is shown in this erratum.

References

  1. Perlmutter, J. S., & Mink, J. W. (2006). Deep brain stimulation. Annual Review of Neuroscience, 29, 229–257.

    Article  Google Scholar 

  2. Wilson, B. S., et al. (1991). Better speech recognition with cochlear implants. Nature, 352(6332), 236–238.

    Article  Google Scholar 

  3. Lin, C.-Y., Li, Y.-J., & Ker, M.-D. (2014). Design of high-voltage-tolerant stimulus driver with adaptive loading consideration to suppress epileptic seizure in a 0.18-m CMOS process. Analog Integrated Circuits and Signal Processing, 79(2), 219–226.

    Article  Google Scholar 

  4. Oluigbo, C. O., Salma, A., & Rezai, A. R. (2012). Deep brain stimulation for neurological disorders. IEEE Reviews in Biomedical Engineering, 5, 88–99.

    Article  Google Scholar 

  5. Kuncel, A. M., & Grill, W. M. (2004). Selection of stimulus parameters for deep brain stimulation. Clinical Neurophysiology, 115(11), 2431–2441.

    Article  Google Scholar 

  6. Lyons, M. K. (2011). Deep brain stimulation: Current and future clinical applications. Mayo Clinic Proceedings, 86(7), 662–672.

    Article  Google Scholar 

  7. Moore, S. K. (2006). Psychiatry’s shocking new tools. IEEE Spectrum, 43(3), 24–31.

    Article  Google Scholar 

  8. Livi, P., Heer, F., Frey, U., Bakkum, D. J., & Hierlemann, A. (2010). Compact voltage and current stimulation buffer for high-density microelectrode arrays. IEEE Transactions on Biomedical Circuits and Systems, 4(6), 372–378.

    Article  Google Scholar 

  9. Lee, J., Rhew, H.-G., Kipke, D., & Flynn, M. (2010). A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE Journal of Solid-State Circuits, 45(9), 1935–1945.

    Article  Google Scholar 

  10. Lee, H.-M., Park, H., & Ghovanloo, M. (2013). A power-efficient wireless system with adaptive supply control for deep brain stimulation. IEEE Journal of Solid-State Circuits, 48(9), 2203–2216.

    Article  Google Scholar 

  11. Testerman, R. L., Rise, M. T., & Stypulkowski, P. H. (2006). Electrical stimulation as therapy for neurological disorders. IEEE Engineering in Medicine and Biology Magazine, 25(5), 74–78.

    Article  Google Scholar 

  12. Simpson, J., & Ghovanloo, M. (2007). An experimental study of voltage, current, and charge controlled stimulation front-end circuitry. In Proceeding of IEEE international symposium circuits and systems, New Orleans, LA (pp. 325–328).

  13. Mooziraji, F. B., & Shoaei, O. (2016). A high power efficient multi-waveform current stimulator used in implantable neural stimulation. Analog Integrated Circuits and Signal Processing, 86(3), 459–469.

    Article  Google Scholar 

  14. Kelly, S. K., & Wyatt, J. L. (2011). A power-efficient neural tissue stimulator with energy recovery. IEEE Transactions on Biomedical Circuits and Systems, 5(1), 20–29.

    Article  Google Scholar 

  15. Arfin, S. K., & Sarpeshkar, R. (2012). An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Transactions on Biomedical Circuits and Systems, 6(1), 1–14.

    Article  Google Scholar 

  16. van Dongen, M. N., & Serdijn, W. A. (2013). A switched-mode multichannel neural stimulator with a minimum number of external components. In 2013 IEEE international symposium on circuits and systems (ISCAS). IEEE.

  17. van Dongen, M. N., & Serdijn, W. A. (2016). A power-efficient multichannel neural stimulator using high-frequency pulsed excitation from an unfiltered dynamic supply. IEEE Transactions on Biomedical Circuits and Systems, 10(1), 61–71.

    Article  Google Scholar 

  18. Randles, J. E. B. (1947). Kinetics of rapid electrode reactions. Discussions of the Faraday Society, 1, 11–19.

    Article  Google Scholar 

  19. Noorsal, E., Sooksood, K., Xu, H., Hornig, R., Becker, J., & Ortmanns, M. (2012). A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants. IEEE Journal of Solid State Circuits, 47(1), 244–256.

    Article  Google Scholar 

  20. Cheung, T., Nu, M., Hoffman, M., Katz, M., Kilbane, C., Alterman, R., et al. (2013). Longitudinal impedance variability in patients with chronically implanted DBS devices. Brain Stimulation, 6, 746–751.

    Article  Google Scholar 

  21. Chen, Y.-J., et al. (2012). A novel constant on-time current-mode control scheme to achieve adaptive voltage positioning for DC power converters. In: IECon 2012-38th annual conference on IEEE industrial electronics society. IEEE.

  22. Bari, S., Li, Q., & Lee, F.C. (2018). A new fast adaptive on-time control for transient response improvement in constant on-time control. IEEE Transactions on Power Electronics, 33(3), 2680–2689.

    Article  Google Scholar 

  23. Nien, C.-F., et al. (2017). A novel adaptive quasi-constant on-time current-mode buck converter. IEEE Transactions on Power Electronics, 32(10), 8124–8133.

    Article  Google Scholar 

  24. Williams, I., & Constandinou, T. (2013). An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 129–139.

    Article  Google Scholar 

  25. Dessouky, M., & Kaiser, A. (1999). Input switch configuration suitable for rail-to-rail operation of switched op amp circuits. Electronics Letters, 35(1), 8–10.

    Article  Google Scholar 

  26. Manuals.medtronic.com. (2018). Available at: http://manuals.medtronic.com/content/dam/emanuals/neuro/CONTRIB_236317.pdf. Accessed 2 Dec 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Shoaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirafkan, R., Shoaei, O. A power efficient, differential multichannel adiabatic electrode stimulator for deep brain stimulation. Analog Integr Circ Sig Process 95, 481–497 (2018). https://doi.org/10.1007/s10470-018-1171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1171-z

Keywords

Navigation