Analog Integrated Circuits and Signal Processing

, Volume 96, Issue 3, pp 543–554 | Cite as

N × M-path filters: analysis and implementation

  • Mohammad Elmi
  • Ali Poursaadati Zinjanab
  • Ali Jalali


Conventional N-path filters are often implemented by using a number of switches and internal low-pass filters that are used in zero-IF receivers. In this paper, by using M-path filters instead of internal low-pass filters, N \(\times\) M-path structure is obtained in three states: single-ended input to single-ended output, single-ended input to differential output and harmonic rejection . These structures can be used in low-IF receivers and also to tune the desired filtering frequency more precisely. Analysis and implementation of each structure is also provided.


N-path filter N-path in M-path Harmonic rejection SAW-less blocker filtering \(\times\) M-path 


  1. 1.
    Mirzaei, A., Darabi, H., & Murphy, D. (2012). Architectural evolution of integrated m-phase high-q bandpass filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 52–65.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Park, J., & Razavi, B. (2014). A 20 mw GSM/WCDMA receiver with RF channel selection. In IEEE international solid-state circuits conference, 2003. Digest of technical papers (pp. 356–357).Google Scholar
  3. 3.
    Ghaffari, A., Klumperink, E., Soer, M., & Nauta, B. (2011). Tunable high-Q n-path band-pass filters: Modeling and verification. The IEEE Journal of Solid-State Circuits, 46(5), 998–1010.CrossRefGoogle Scholar
  4. 4.
    Andrews, C., & Molnar, A. (2010). A passive mixer-first receiver with digitally controlled and widely tunable RF interface. The IEEE Journal of Solid-State Circuits, 45(12), 2696–2708.CrossRefGoogle Scholar
  5. 5.
    Ru, Z., Klumperink, E., Wienk, G., & Nauta, B. (2009). A software-defined radio receiver architecture robust to out-of-band interference. In IEEE ISSCC: digest of technical papers (pp. 230–231).Google Scholar
  6. 6.
    Mirzaei, A., Chen, X., Yazdi, A., Chiu, J., Leete, J., & Darabi, H. (2009). A frequency translation technique for saw-less 3G receivers. In Symposium on VLSI circuits (pp. 280–281).Google Scholar
  7. 7.
    Lin, F., Mak, P., & Martins, R. An RF-to-BB current-reuse wideband receiver with parallel n-path active/passive mixers and a single-mos pole-zero lpf. In IEEE ISSCC digest of technical papers.Google Scholar
  8. 8.
    Murphy, D., Hafez, A., Mirzaei, A., Mikhemar, M., Darabi, H., Chang, M., & Abidi, A. (2012). A blocker-tolerant wideband noise-cancelling receiver with a 2 db noise figure. In EEE ISSCC digest of technical papers (pp. 74–75).Google Scholar
  9. 9.
    Murphy, D., Darabi, H., & Xu, H. (2014). A noise-cancelling receiver with enhanced resilience to harmonic blockers. In IEEE ISSCC digest of technical papers (pp. 68–69).Google Scholar
  10. 10.
    Soer, M., Klumperink, E., Ru, Z., Vliet, F., & Nauta, B. (2009). A 0.2-to-2.0 GHZ 65 nm CMOS receiver without LNA achieving \(>\)11dbm iip3 and \(<\)6.5 db nf.IEEE ISSCC, digest of technical papers (pp. 222–223).Google Scholar
  11. 11.
    Darvishi, M., Zee, R., & Nauta, B. (2013). A 0.1-to-1.2 GHZ tunable 6th-order n-path channel-select filter with 0.6 db passband ripple and 7 dbm blocker tolerance. In IEEE ISSCC digest of technical papers (pp. 172–173).Google Scholar
  12. 12.
    Qi, G., Mak, P., & Martins, R. (2017). A 0.038-mm2 SAW-less multiband transceiver using an n-path SC gain loop. IEEE Journal of Solid-State Circuits, 52, 2055–2070.CrossRefGoogle Scholar
  13. 13.
    Lien, Y., Klumperink, E., Tenbroek, B., Strange, J., & Nauta, B. (2017). A high-linearity CMOS receiver achieving +44d bm iip3 and +13 dbm b1db for saw-less LTE radio. In IEEE international solid-state circuits conference, digest of technical papers (pp. 412–413).Google Scholar
  14. 14.
    Hameed, S., Sinha, N., Rachid, M. & Pamarti, S. (2016). A programmable receiver front-end achieving > 17 dbm iip3 at < 1.25bw frequency offset. In IEEE international solid-state circuits conference, digest of technical papers (pp. 446–447).Google Scholar
  15. 15.
    Smith, B. (1953). Analysis of commutated networks. In IRE transactions (pp. 21–26).Google Scholar
  16. 16.
    Franks, L., & Sandberg, I. (1960). An alternative approach to the realization of network transfer functions: The n-path filters. The Bell System Technical Journal, 39, 1321–1350.CrossRefGoogle Scholar
  17. 17.
    Elmi, M., Tavassoli, M., & Jalali, A. (2018). A wideband receiver front-end using 1st and 3rd harmonics of the n-path filter response. Analog Integrated Circuits and Signal Processing, 94, 451–467.CrossRefGoogle Scholar
  18. 18.
    Mohammadpour, A., Behmanesh, B., & Atarodi, S. (2013). An n-path enhanced-q tunable filter with reduced harmonic fold back effects. IEEE Transactions on Circuits and Systems I: Regular Papers, 60, 2867–2877.CrossRefGoogle Scholar
  19. 19.
    Hemati, A., & Jannesari, A. (2017). Harmonic fold back reduction at the n-path filters. International Journal of Circuit Theory and Applications, 45, 419–438.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microelectronic Laboratory, Department of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations