Active inductor based tunable multiband RF front end design for UWB applications

Article

Abstract

This paper presents a multiband RF front end, designed with cascading a ultra wide band (UWB) low noise amplifier and a tunable band pass filter (BPF). The tunable BPF is designed using active inductors. A controllable current source is used to tune the BPF to select the bands of UWB range. The proposed RF front end is tuned to select the center frequencies 4, 5, 6.6, 7.96 and 10 GHz of UWB range. The obtained UWB bands are able to achieve a gain greater than 20 dB and a noise figure less than 5 dB. The designed RF front end consumed an average power of 23 mW.

Keywords

UWB bands Multiband RF front end Active inductor Tunable BPF UWB LNA Noise figure 

Notes

Acknowledgements

The authors wish to thank ECE Department of SRM Institute of Science and Technology for supporting ADS and Cadence lab for our research work.

References

  1. 1.
    FCC News, Web page, New public safety application and broadband internet access among uses envisioned by FCC authorization of ultra wideband technology, announcement of commission action.Google Scholar
  2. 2.
    Leung, B., & Sodini, C. G. (2009). VLSI for wireless communication. Singapore: Pearson Education.Google Scholar
  3. 3.
    Ge, J., & Dinh, A. (2003). A 3.6 GHz tunable CMOS band pass filter using q-enhanced circuit. In IEEE Pacific Rim international conference on communications, computers and signal processing (Vol. 1, pp. 57–61).Google Scholar
  4. 4.
    Wu, C. R., Hsieh, H. H., Lai, L. S., & Lu, L. H. (2008). A 3–5 GHz frequency-tunable receiver frontend for multiband applications. IEEE Microwave and Wireless Components Letters, 18(9), 638–640.CrossRefGoogle Scholar
  5. 5.
    Kim, C. J., Jang, Y. K., & Yoo, H. J. (2004). System level design of multi-standard receiver using reconfigurable RF block. Journal of Semiconductor Technology and Science, 4(3), 174–181.Google Scholar
  6. 6.
    Ismail, A., & Abidi, A. A. (2004). A 3–10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE Journal of Solid-State Circuits, 39(12), 2269–2277.CrossRefGoogle Scholar
  7. 7.
    Thanachayanont, A., & Ngow, S. S. (2002). Low voltage high Q VHF CMOS transistor only active inductor. In Proceedings of the IEEE international midwest symposium on circuits and systems (Vol. 3, pp. 552–555).Google Scholar
  8. 8.
    Thanachayanont, A. (2002). CMOS transistor only active inductor for IF/RF applications. In IEEE international conference on industry technology (ICIT’02), Thailand (Vol. 2, pp. 1209–1212).Google Scholar
  9. 9.
    Cheng, W. C., Ma, J. G., Yeo, K. S., & Do, M. A. (2006). A 1 V switchable CMOS LNA for 802.11 A/B WLAN applications. Analog Integrated Circuits and Signal Processing, 48(3), 181–184.CrossRefGoogle Scholar
  10. 10.
    Zhan, J. H. C., & Taylor, S. (2006). A 5 GHz resistive feedback CMOS LNA for low-cost multi standard application. In IEEE ISSCC technique digest (pp. 200–201).Google Scholar
  11. 11.
    Wi-Media Alliance. (2009). Multiband OFDM physical layer specification, August 2009.Google Scholar
  12. 12.
    MB-OFDM Alliance. (2004). Multiband OFDM physical layer proposal for IEEE 802.15 task group 3a, September 2004.Google Scholar
  13. 13.
    Duan, J., Hao, Q., Zheng, Y., Wei, B., Xu, W., & Xu, S. (2015). Design of an incoherent IR-UWB receiver front-end in 180-nm CMOS technology. In 16th international symposium on quality electronic design (pp. 186–190).Google Scholar
  14. 14.
    Chironi, V., D’Amico, S., De Matteis, M., & Baschirotto, A. (2013). A dualband balun LNA resilient to 5–6 GHz WLAN blockers for IR-UWB in 65 nm CMOS. In 2013 international conference on IC design technology (ICICDT) (pp. 171–174).Google Scholar
  15. 15.
    Chironi, V., D’Amico, S., Pasca, M., De Matteis, M., & Baschirotto, A. (2014). A SAW-less dual-band RF front-end for IR-UWB receiver in 65 nm CMOS. In IEEE international symposium on circuits and systems (pp. 1019–1912).Google Scholar
  16. 16.
    Kamsani, N. A., Thangasamy, V., Bukhori, M. F., & Shafie, S. (2015). A multiband 130 nm CMOS low noise amplifier for LTE bands. In IEEE international circuits and systems symposium (pp. 106–110).Google Scholar
  17. 17.
    Hashemi, H., & Hajimiri, A. (2002). Concurrent multiband low-noise amplifiers-theory, design, and applications. IEEE Transactions on Microwave Theory and Techniques, 50(1), 288–301.CrossRefGoogle Scholar
  18. 18.
    Frye, R. C., Liu, K., Badakere, G., & Lin, Y. (2007). A hybrid coupled resonator band pass filter topology implemented on lossy semiconductor substrates. In EEE/MTT-S international microwave symposium (pp. 1757–1760).Google Scholar
  19. 19.
    Gao, Z., Ma, J., Yu, M., & Ye, Y. (2008). A fully integrated CMOS active bandpass filter for multiband RF front-ends. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 718–722.CrossRefGoogle Scholar
  20. 20.
    Vema Krishnamurthy, S., El-Sankary, K., & El-Masry, E. (2010). Noise-cancelling CMOS active inductor and its application in RF band-pass filter design. International Journal of Microwave Science and Technology, 2010, Article ID 980957.Google Scholar
  21. 21.
    Wu, Y., Ding, X., Ismail, M., & Olsson, H. (2003). RF bandpass filter design based on CMOS active inductors. IEEE Transactions on Circuits and Systems, 50(12), 942–949.CrossRefGoogle Scholar
  22. 22.
    Andriesei, C., Goras, L., & Temcamani, F. (2008). Negative resistance based tuning of an RF band pass filter. In Fourth European conference on circuits and systems for communications, Romania (Vol. 1, pp. 1–4).Google Scholar
  23. 23.
    Reja, M. M., Filanovsky, I. M., & Moez, K. (2008). Wide tunable CMOS active inductor. Electronics Letters, 44(25), 1461–1463.CrossRefGoogle Scholar
  24. 24.
    Behmanesh, B., & Atarodi, S. M. (2017). Active eight-path filter and LNA with wide channel bandwidth and center frequency tunability. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4715–4723.CrossRefGoogle Scholar
  25. 25.
    Singh, R., Slovin, G., Xu, M., Schlesinger, T. E., Bain, J. A., & Paramesh, J. (2017). A reconfigurable dual-frequency narrowband CMOS LNA using phase-change RF switches. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4689–4702.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ECE DepartmentSRM Institute of Science and TechnologyKattankulathur, ChennaiIndia

Personalised recommendations