Nth order current mode universal filter using MOCCCIIs

Mixed Signal Letter
  • 4 Downloads

Abstract

This article presents a new current mode single-input-multiple-output nth order universal filter. The proposed circuit employs (n + 1) number multiple output second generation current conveyors and n number grounded capacitors only. Presented circuits can realize current mode low pass, high pass, band pass, notch and all pass responses simultaneously at different high output impedance terminals. The current mode filter circuit provides low input impedance by selecting the proper value of bias current and also has high output impedance, which is suitable for cascading. The circuit offers some important features such as resistor less realization, no passive component matching constraints, low sensitivity, electronic tunability and active-C realization. The functionality of the proposed filter circuit is tested with the PSPICE simulation, which is found to agree well with the proposed theory.

Keywords

Current mode (CM) Transimpedance mode High-order filter MOCCCIIs Universal filter 

References

  1. 1.
    Ferri, G., & Guerrini, N. C. (2003). Low-voltage low-power CMOS current conveyors. Berlin: Springer.Google Scholar
  2. 2.
    Toumazou, C., Lidgey, F. J., & Haigh, D. (1990). Analogue IC design: The current-mode approach (Vol. 2). Louisville: Presbyterian Publishing Corporation.Google Scholar
  3. 3.
    Sedra, A. S., & Smith, K. C. (1970). A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory, 17(1), 132–134.CrossRefGoogle Scholar
  4. 4.
    Fabre, A., Saaid, O., Wiest, F., & Boucheron, C. (1996). High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 43(2), 82–91.CrossRefGoogle Scholar
  5. 5.
    Wang, C., Xu, J., Keskin, A. Ü., Du, S., & Zhang, Q. (2011). A new current-mode current-controlled SIMO-type universal filter. AEU-International Journal of Electronics and Communications, 65(3), 231–234.CrossRefGoogle Scholar
  6. 6.
    Pandey, N., Paul, S. K., & Jain, S. B. (2009). A new electronically tunable current mode universal filter using MO-CCCII. Analog Integrated Circuits and Signal Processing, 58(2), 171–178.CrossRefGoogle Scholar
  7. 7.
    Jerabek, J., & Vrba, K. (2010). SIMO type low-input and high-output impedance current-mode universal filter employing three universal current conveyors. AEU-International Journal of Electronics and Communications, 64(6), 588–593.CrossRefGoogle Scholar
  8. 8.
    Pandey, N., Paul, S. K., Bhattacharyya, A., & Jain, S. B. (2005). A novel current controlled current mode universal filter: SITO approach. IEICE Electronics Express, 2(17), 451–457.CrossRefGoogle Scholar
  9. 9.
    Wang, C., Liu, H., & Zhao, Y. (2008). A new current-mode current-controlled universal filter based on CCCII (±). Circuits, Systems, and Signal Processing, 27(5), 673–682.CrossRefGoogle Scholar
  10. 10.
    Zhijun, L. (2009). Mixed-mode universal filter using MCCCII. AEU-International Journal of Electronics and Communications, 63(12), 1072–1075.CrossRefGoogle Scholar
  11. 11.
    Kumngern, M., Khateb, F., Phasukkit, P., Tungjitkusolmun, S., & Junnapiya, S. (2014). ECCCII-based current-mode universal filter with orthogonal control of ωo and Qo. Radioengineering, 23(2), 687.Google Scholar
  12. 12.
    Abaci, A., & Yuce, E. (2017). A new DVCC + based second-order current-mode universal filter consisting of only grounded capacitors. Journal of Circuits, Systems and Computers, 26(09), 1750130.CrossRefGoogle Scholar
  13. 13.
    Chen, H. P. (2014). Current-mode dual-output ICCII-based tunable universal biquadratic filter with low-input and high-output impedances. International Journal of Circuit Theory and Applications, 42(4), 376–393.CrossRefGoogle Scholar
  14. 14.
    Pandey, N., & Paul, S. K. (2013). Mixed mode universal filter. Journal of Circuits, Systems and Computers, 22(01), 1250064.CrossRefGoogle Scholar
  15. 15.
    Kumngern, M., Jongchanachavawat, W., & Dejhan, K. (2010). New electronically tunable current-mode universal biquad filter using translinear current conveyors. International Journal of Electronics, 97(5), 511–523.CrossRefGoogle Scholar
  16. 16.
    Chen, H. P. (2012). Tunable versatile current-mode universal filter based on plus-type DVCCs. AEU-International Journal of Electronics and Communications, 66(4), 332–339.CrossRefGoogle Scholar
  17. 17.
    Yuce, E., Kircay, A., & Tokat, S. (2008). Universal resistorless current-mode filters employing CCCIIs. International Journal of Circuit Theory and Applications, 36(5–6), 739–755.CrossRefMATHGoogle Scholar
  18. 18.
    Tangsrirat, W. (2007). Current-tunable current-mode multifunction filter based on dual-output current-controlled conveyors. AEU-International Journal of Electronics and Communications, 61(8), 528–533.CrossRefGoogle Scholar
  19. 19.
    Prommee, P., & Somdunyakanok, M. (2011). CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter. AEU-International Journal of Electronics and Communications, 65(1), 1–8.CrossRefGoogle Scholar
  20. 20.
    Tangsrirat, W., & Surakampontorn, W. (2006). Electronically tunable current-mode universal filter employing only plus-type current-controlled conveyors and grounded capacitors. Circuits, Systems, and Signal Processing, 25(6), 701–713.CrossRefMATHGoogle Scholar
  21. 21.
    Horng, J. W. (2015). Three-input-one-output current-mode universal biquadratic filter using one differential difference current conveyor. Indian Journal of Pure & Applied Physics (IJPAP), 52(8), 556–562.Google Scholar
  22. 22.
    Acar, C., & Sedef, H. (2000). Nth-order lowpass current transfer function synthesis using CCII based unity gain current followers. Frequenz, 54(7–8), 180–181.Google Scholar
  23. 23.
    Horng, J. W. (2012). Analytical synthesis of general high-order voltage/current transfer functions using CCIIs. Microelectronics Journal, 43(8), 546–554.CrossRefGoogle Scholar
  24. 24.
    Alzaher, H., Tasadduq, N., & Al-Ees, O. (2013). Implementation of reconfigurable nth-order filter based on CCII. Analog Integrated Circuits and Signal Processing, 75(3), 539–545.CrossRefGoogle Scholar
  25. 25.
    Horng, J. W. (2009). High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioengineering, 18(4), 537–543.Google Scholar
  26. 26.
    Yuce, E., & Minaei, S. (2008). On the realization of high-order current-mode filter employing current controlled conveyors. Computers & Electrical Engineering, 34(3), 165–172.CrossRefMATHGoogle Scholar
  27. 27.
    Lee, C. N. (2013). High-order current-mode universal filter using CCIIs and grounded passive components. International Journal of Emerging Technology and Advanced Engineering, 3(8), 608–613.Google Scholar
  28. 28.
    Ghosh, K., & Ray, B. N. (2015). CCII-based nth-order current-mode filter with grounded R and C. International Journal of Electronics Letters, 3(2), 105–121.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cao, M., He, H., Lin, H., Peng, H., & Zhu, B. (2016). Current-mode nth-order filter based on a minimal component. Journal of Circuits, Systems and Computers, 25(05), 1650035.CrossRefGoogle Scholar
  30. 30.
    Altun, M., Kuntman, H., Minaei, S., & Sayin, O. K. (2009). Realisation of n-th order current transfer function employing ECCIIs and application examples. International Journal of Electronics, 96(11), 1115–1126.CrossRefGoogle Scholar
  31. 31.
    Yuce, E., & Minaei, S. (2009). ICCII-based universal current-mode analog filter employing only grounded passive components. Analog Integrated Circuits and Signal Processing, 58(2), 161–169.CrossRefGoogle Scholar
  32. 32.
    Koksal, M., & Sagbas, M. (2008). A versatile signal flow graph realization of a general current transfer function. AEU-International Journal of Electronics and Communications, 62(1), 33–40.CrossRefGoogle Scholar
  33. 33.
    Sagbas, M., & Koksal, M. (2008). Current-mode state-variable filter. Frequenz, 62(1–2), 37–42.Google Scholar
  34. 34.
    Yuce, E., & Minaei, S. (2014). Realization of arbitrary current transfer functions based on commercially available CCII+ s. International Journal of Circuit Theory and Applications, 42(7), 659–670.CrossRefGoogle Scholar
  35. 35.
    Maheshwari, S., & Verma, R. (2012). Electronically tunable sinusoidal oscillator circuit. Active and Passive Electronic Components, 2012, 6.  https://doi.org/10.1155/2012/719376.CrossRefGoogle Scholar
  36. 36.
    Agrawal, D., & Maheshwari, S. (2017). Current mode filters with reduced complexity using a single EX-CCCII. AEU-International Journal of Electronics and Communications, 80, 86–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations