Skip to main content
Log in

Analog circuit diagnosis based on the nullor concept and multiport description of the circuit

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The subject of this paper is the fault diagnosis of analog circuits based on the use of nullor concept. The fault location technique presented in the paper can be implemented in the general-purpose analysis program which provides many advantages, of which the most important is the automation of the diagnosis process. A simulation based diagnosis model can be obtained by introducing the norators across the potentially faulty elements and the fixators at the accessible nodes. A practical problem that arises when using this nullor diagnosis model is a lack of an efficient procedure for localization of multiple faults. In the proposed diagnosis technique, the online computational requirements are reduced by introducing a diagnosis model that contains accessible nodes only. The diagnosis model is obtained from the original circuit using relationships among the measured voltages and compensated currents of the faulty elements. The proposed faulty location technique is validated on a benchmark example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fontana, G., Luchetta, A., Manetti, S., & Piccirilli, M. (2017). A fast algorithm for testability analysis of large linear time-invariant networks. IEEE Transactions on Circuits and Systems I, 64(6), 1564–1575.

    Article  Google Scholar 

  2. Tadeusiewicz, M., & Hałgas, S. (2015). A new approach to multiple soft fault diagnosis of analog BJT and CMOS circuits. IEEE Transactions on Instrumentation and Measurement, 64(10), 2688–2695.

    Article  Google Scholar 

  3. Dai, H., & Souders, T. M. (1990). Time-domain testing strategies and fault diagnosis for analog systems. IEEE Transactions on Instrumentation and Measurement, 39(1), 157–162.

    Article  Google Scholar 

  4. Robotycki, A., & Zielonko, R. (2002). Fault diagnosis of analog piecewise linear circuits based on homotopy. IEEE Transactions on Instrumentation and Measurement, 51(4), 876–881.

    Article  Google Scholar 

  5. Cannas, B., Fanni, A., & Montisci, A. (2010). Algebraic approach to ambiguity-group determination in nonlinear analog circuits. IEEE Transactions on Circuits and Systems I, 57(2), 438–447.

    Article  MathSciNet  Google Scholar 

  6. Starzyk, J., & Dai, H. (1992). A decomposition approach for testing large analog networks. Journal of Electronic Testing: Theory and Applications, 3(3), 181–195.

    Article  Google Scholar 

  7. Fedi, G., Manetti, S., Piccirilli, M., & Starzyk, J. (1999). Determination of an optimum set of testable components in the fault diagnosis of analog linear circuits. IEEE Transactions on Circuit and Systems—I Fundamental Theory and Applications, 46(7), 779–787.

    Article  Google Scholar 

  8. He, Y., & Sun, Y. (2001). Neural network-based L/sub 1/-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance. IEE Proceedings—Circuits, Devices and Systems, 148(4), 223–228.

    Article  Google Scholar 

  9. Peng, W., & Shiyuan, Y. (2005). A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math. IEEE Transactions on Circuits and Systems I, 52(10), 2118–2127.

    Article  MathSciNet  MATH  Google Scholar 

  10. Farchy, S., Gadzheva, E., Raykovska, L., & Kouyoumdjiev, T. (1995). Nullator–norator approach to analogue circuit diagnosis using general-purpose analysis programmes. International Journal of Circuit Theory and Applications, 23(6), 571–585.

    Article  Google Scholar 

  11. Nenov, G., Sotirov, S., & Nenova, M. (2003). Nullor network diagnosis by using multilayer perceptron. IEEE Conference EUROCON 2003. Computer as a Tool, 1, 67–70.

    Google Scholar 

  12. Straube, B., & Vermeiren, W. (2002). A nullator–norator-based analogue circuit DC-test generation approach. In 8th international mixed-signal testing workshop, Montreux, Switzerland, 18–21 June (pp. 133–136).

  13. Gadjeva, E., & Gadzhev, N. (2009). A nullator–norator model-based approach to analog circuit diagnosis. Facta Universitatis, Series: Electronics and Energetics, 22(2), 253–260.

    Google Scholar 

  14. Gadjeva, E., & Gadzhev, N. (2012). A nullor approach to computer-aided analogue circuit diagnosis. Inverse Problems in Science and Engineering, 20(1), 127–136.

    Article  Google Scholar 

  15. Filaretov, V., Kurganov, S., & Gorshkov, K. (2016). Generalized parameter extraction method for analog circuit fault diagnosis. In 2016 2nd international conference on industrial engineering, applications and manufacturing (ICIEAM) (pp. 1–6).

  16. Biernacki, R. M., & Bandler, I. W. (1981). Multiple-fault location of analog circuits. IEEE Transaction on Circuits and System, 28(5), 361–367.

    Article  MATH  Google Scholar 

  17. Huang, Z. F., Lin, C. S., & Liu, R. W. (1983). Topological conditions for single-branch-fault. IEEE Transaction on Circuits and System, 30(6), 376–381.

    Article  MathSciNet  MATH  Google Scholar 

  18. Starzyk, J., & Bandler, J. (1983). Multiport approach to multiple-fault location in analog circuits. IEEE Transaction on Circuits and System, 30(10), 762–765.

    Article  MathSciNet  MATH  Google Scholar 

  19. Minfang, P., Yigang, H., Yi, T., Hongli, H., & Xueyi, S. (2003). Line fault location in a distribution network based on K-fault diagnosis method. In Proceedings of 2003 IEEE international conference on robotics intelligent systems and signal processing 2003 (Vol. 1, pp. 571–575).

  20. Huang, J.-L., & Cheng, K.-T. (2000). Test point selection for analog fault diagnosis of unpowered circuit boards. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(10), 977–987.

    Article  Google Scholar 

  21. Kumar, P., & Senani, R. (2002). Bibliography on nullors and their applications in circuit analysis, synthesis and design. Analog Integrated Circuits and Signal Processing, 33(1), 65–76.

    Article  Google Scholar 

  22. Carlin, H. (1964). Singular network elements. IEEE Transactions on Circuit Theory, 11(1), 67–72.

    Article  Google Scholar 

  23. Sanches-Lopez, C., Fernandez, F., Tlelo-Cuautle, E., & Tan, S. (2011). Pathological element-based active device models and their application to symbolic analysis. IEEE Transactions on Circuits and Systems I, 58(6), 1382–1395.

    Article  MathSciNet  Google Scholar 

  24. Pierzchala, M., & Fakhfakh, M. (2014). Symbolic analysis of nullor-based circuits with the two-graph technique. Circuits, Systems and Signal Processing, 33(4), 1053–1066.

    Article  Google Scholar 

  25. Saad, R., & Soliman, A. (2008). Use of mirror elements in the active device synthesis by admittance matrix expansion. IEEE Transactions on Circuits and Systems I, 55(9), 2726–2735.

    Article  MathSciNet  Google Scholar 

  26. Kumngern, M., Khateb, F., & Kulej, T. (2017). Fully-balanced four-terminal floating nullor for ultra-low voltage analogue filter design. IET Circuits, Devices and Systems, 11(2), 173–182.

    Article  Google Scholar 

  27. Sánchez-López, C., Cante-Michcol, B., Morales-López, F., & Carrasco-Aguilar, M. (2013). Pathological equivalents of CMs and VMs with multiple outputs. Analog Integrated Circuits and Signal Processing, 75(1), 75–83.

    Article  Google Scholar 

  28. Hashemian, R. (2014). Fixator–norator pairs versus direct analytical tools in performing analog circuit designs. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(8), 569–573.

    Article  Google Scholar 

  29. Djordjevic, S. (2017). Analog circuit sizing using local biasing. Analog Integrated Circuits and Signal Processing, 93(2), 299–308.

    Article  Google Scholar 

  30. Jiang, B. L., Wey, C. L., & Fan, L. J. (1988). Fault prediction for analog circuits. Journal of Circuits Systems and Signal Processing, 7(1), 95–109.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Dragomira Djordjevic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djordjevic, S.D. Analog circuit diagnosis based on the nullor concept and multiport description of the circuit. Analog Integr Circ Sig Process 95, 141–149 (2018). https://doi.org/10.1007/s10470-018-1123-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1123-7

Keywords

Navigation