5.18–7.42 GHz LC-VCO in subthreshold regime with low power low phase noise and immunity to PVT variations in 130 nm CMOS technology

  • Abdelhamid Aitoumeri
  • Abdelmalik Bouyahyaoui
  • Mustapha Alami
Article
  • 3 Downloads

Abstract

In this paper, we propose an LC-VCO using automatic amplitude control and filtering technique to eliminate frequency noise around 2\(\omega _0\). The LC-VCO is designed with TSMC 130 nm CMOS RF technology, and biased in subthreshold regime in order to get more negative transconductance to overcome the losses in the LC-Tank and achieve less power consumption. The designed VCO operates at 5.17 GHz and can be tuned from 5.17 to 7.398 GHz, which is corresponding to 35.5% tuning range. The VCO consumes through it 495–440.5 \(\upmu\)W from 400 mV dc supply. This VCO achieves a phase noise of \(-\,122.3\) and \(-\,111.7\) dBc/Hz at 1 MHz offset from 5.17 and 7.39 GHz carrier, respectively. The calculated Figure-of-merits (FoM) at 1 MHz offset from 5.17 and 7.39 GHz is \(-\,199.7\) and \(-\,192.4\) dBc/Hz, respectively. And it is under \(-\,190.5\) dBc/Hz through all the tuning range. The FoM\(_T\) at 1 MHz offset from 5.17 GHz carrier is \(-\,210.6\) dBc/Hz. The proposed design was simulated for three different temperatures (\(-\,55\), 27, \(125\,^{\circ }\hbox {C}\)), and three supply voltages (0.45, 0.4, 0.35 V), it was concluded that the designed LC-VCO presents high immunity to PVT variations, and can be used for multi-standard wireless LAN communication protocols 802.11a/b/g.

Keywords

Subthreshold LC-VCO Phase noise Power consumption CMOS technology PVT 

References

  1. 1.
    Oh, N. J. (2014). A phase-noise reduction technique for RF CMOS voltage-controlled oscillator with a series LC resonator. Microelectronics Journal, 45(4), 435–440.CrossRefGoogle Scholar
  2. 2.
    Hegazi, E., Sjoland, H., & Abidi, A. A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 36(12), 1921–1930.CrossRefGoogle Scholar
  3. 3.
    Hajimiri, A., & Lee, T. H. (1999). Design issues in CMOS differential LC oscillators. IEEE Journal of Solid-State Circuits, 34(5), 717–724.CrossRefGoogle Scholar
  4. 4.
    Men, K., Thangarasu, B. K., & Yeo, K. S. (2016). A VCO phase noise reduction technique to suppress the active device contribution. In 2016 IEEE international nanoelectronics conference (INEC), May 2016, pp. 1–2.Google Scholar
  5. 5.
    Ghorbel, I., Haddad, F., & Rahajandraibe, W. (2015). Ultra low power RF cross-coupled VCO design in the subthreshold regime with high immunity to PVT variations in 130 nm CMOS technology. In New circuits and systems conference (NEWCAS), 2015 IEEE 13th international. IEEE, pp. 1–4.Google Scholar
  6. 6.
    Fathi, D., & Nejad, A. G. (2013). Ultra-low power, low phase noise 10 GHz LC VCO in the subthreshold regime. Circuits and Systems, 4(04), 350.CrossRefGoogle Scholar
  7. 7.
    Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.CrossRefGoogle Scholar
  8. 8.
    Hajimiri, A., & Lee, T. H. (1999). The design of low noise oscillators. Berlin: Springer.Google Scholar
  9. 9.
    Ham, D., & Hajimiri, A. (2001). Concepts and methods in optimization of integrated LC VCOs. IEEE Journal of Solid-State Circuits, 36(6), 896–909.CrossRefGoogle Scholar
  10. 10.
    Tajalli, A., & Leblebici, Y. (2010). Extreme low-power mixed signal IC design. Berlin: Springer.CrossRefGoogle Scholar
  11. 11.
    Andreani, P., & Fard, A. (2006). More on the \(1/f^2\) phase noise performance of CMOS differential-pair LC-Tank oscillators. IEEE Journal of Solid-State Circuits, 41(12), 2703–2712.CrossRefGoogle Scholar
  12. 12.
    zhi Wang, D., feng Zhang, K., & cheng Zou, X. (2013). Wideband Q-VCO using tail-current shaping based automatic amplitude control. Microelectronics Journal, 44(5), 367–372.CrossRefGoogle Scholar
  13. 13.
    Dixit, M., Shrivastava, S. C., & Dixit, P. (2015). A 5–5.47 GHz LC-VCO using varactor configuration in 0.18 um CMOS technology. In 2015 2nd international conference on signal processing and integrated networks (SPIN), Feb, pp. 887–890.Google Scholar
  14. 14.
    Bunch, R. L., & Raman, S. (2003). Large-signal analysis of MOS varactors in CMOS \(G_m\) LC VCOs. IEEE Journal of Solid-State Circuits, 38(8), 1325–1332.CrossRefGoogle Scholar
  15. 15.
    Ainspan, H., & Plouchart, J.-O. (2000). A comparison of MOS varactors in fully-integrated CMOS LC VCO’s at 5 and 7 GHz. In Solid-state circuits conference, 2000. ESSCIRC’00. Proceedings of the 26th European. IEEE, pp. 447–450.Google Scholar
  16. 16.
    Andreani, P. (1998) A comparison between two 1.8 GHz CMOS VCOs tuned by different varactors. In Solid-state circuits conference, 1998. ESSCIRC’98. Proceedings of the 24th European. IEEE, pp. 380–383.Google Scholar
  17. 17.
    Aitoumeri, A., Bouyahyaoui, A., Alami, M., & Zouaq, K. (2016). A low power low phase noise 1.6 GHz LC-VCO in 130 nm CMOS technology. In 2016 7th international conference on sciences of electronics, technologies of information and telecommunications (SETIT), Dec 2016, pp. 48–52.Google Scholar
  18. 18.
    Brandolini, M., Rossi, P., Manstretta, D., & Svelto, F. (2005). Toward multistandard mobile terminals-fully integrated receivers requirements and architectures. IEEE Transactions on Microwave Theory and Techniques, 53(3), 1026–1038.CrossRefGoogle Scholar
  19. 19.
    Ji, X., Xia, X., He, L., & Guo, Y. (2017). Self-biased CMOS LC VCO based on trans-conductance linearisation technique. Electronics Letters, 53(22), 1460–1462.CrossRefGoogle Scholar
  20. 20.
    Jang, S.-L., et al. (2017). Dual-resonance concurrent oscillator. Microelectronics Reliability.  https://doi.org/10.1016/j.microrel.2017.03.012.Google Scholar
  21. 21.
    Sanchez-Azqueta, C., Aguirre, J., Gimeno, C., Aldea, C., & Celma, S. (2016). High-resolution wide-band LC-VCO for reliable operation in phase-locked loops. Microelectronics Reliability, 63, 251–255.CrossRefGoogle Scholar
  22. 22.
    Luo, Y., Ma, C., Gan, Y., Qian, M., & Ye, T. (2015). A dual-band CMOS LC-VCO with highly linear frequency tuning characteristics. Microelectronics Journal, 46(12), 1420–1425.CrossRefGoogle Scholar
  23. 23.
    Li, D., Yang, Y.-T., Zhu, Z.-M., & Shi, Z.-C. (2015). A 5-GHz LC VCO with digital AAC and AFBS for 2.4 GHz zigbee transceiver applications. Microelectronics Journal, 46(6), 415–421.CrossRefGoogle Scholar
  24. 24.
    Hsu, M.-T., Chen, P.-H., & Lee, Y.-Y. (2014). Design of 5 GHz low-power CMOS LC VCO based on complementary cross-coupled topology with modified tail current-shaping technique. International Journal of Microwave and Wireless Technologies, 6(6), 573–580.CrossRefGoogle Scholar
  25. 25.
    Wang, W., Li, W., Li, N., & Ren, J. (2014). An 8 to 9 GHz LC-VCO and harmonic-suppressed CML divider with low supply voltage for FMCW synthesizer. In 2014 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT). IEEE , pp. 1–3.Google Scholar
  26. 26.
    Elbadry, M., Kalia, S., & Harjani, R. (2014). A 52% tuning range QVCO with a reduced noise coupling scheme and a minimum FoM\(_T\) of 196 dBc/Hz. In 2014 IEEE proceedings of the custom integrated circuits conference (CICC). IEEE, pp. 1–4.Google Scholar
  27. 27.
    Zhou, J., Li, W., Huang, D., Lian, C., Li, N., Ren, J., et al. (2013). A 0.4–6-GHz frequency synthesizer using dual-mode VCO for software-defined radio. IEEE Transactions on Microwave Theory and Techniques, 61(2), 848–859.CrossRefGoogle Scholar
  28. 28.
    Park, D., & Cho, S. (2009). Design techniques for a low-voltage VCO with wide tuning range and low sensitivity to environmental variations. IEEE Transactions on Microwave Theory and Techniques, 57(4), 767–774.CrossRefGoogle Scholar
  29. 29.
    Sadhu, B., Kim, J., & Harjani, R. (2009). A CMOS 3.3-8.4 GHz wide tuning range, low phase noise LC VCO. In Custom integrated circuits conference, CICC’09. IEEE. pp. 559–562.Google Scholar
  30. 30.
    Mehrabian, M., Nabavi, A., & Rashidi, N. (2008). A 4 7 GHz ultra wideband VCO with tunable active inductor. In IEEE international conference on ultra-wideband, 2008. ICUWB 2008, Vol. 2. IEEE, pp. 21–24.Google Scholar
  31. 31.
    Lee, Y. J., & Kim, C. S. (2007). Q-enhanced 5GHz CMOS VCO using 4-port transformer. In Topical meeting on silicon monolithic integrated circuits in RF systems. IEEE, pp. 119–122.Google Scholar
  32. 32.
    Bevilacqua, A., Pavan, F. P., Sandner, C., Gerosa, A., & Neviani, A. (2007). Transformer-based dual-mode voltage-controlled oscillators. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(4), 293–297.CrossRefGoogle Scholar
  33. 33.
    The, Y. J., Zheng, Y., & Yeoh, W. G. (2007). A 0.18 \(\mu\)m CMOS 8 GHz Quadrature VCO for UWB application. In IEEE international conference on ultra-wideband, ICUWB 2007. IEEE, pp. 636–641.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.STRS LabNational Institute of Posts and Telecommunications (INPT)RabatMorocco

Personalised recommendations