Advertisement

Three stages CMOS operational amplifier frequency compensation using single Miller capacitor and differential feedback path

  • Sadegh Biabanifard
  • S. Mehdi Largani
  • Ali Biamanifard
  • Mohammad Biabanifard
  • Marziyeh Hemmati
  • Zohre Khanmohammadi
Article
  • 39 Downloads

Abstract

This study describes a new and simple frequency compensation for three stages amplifiers based on revered nested Miller compensation (RNMC) structure. Using only one and small compensation capacitor reduced circuit complexity and die area while shows better performance compared to RNMC. Also the proposed method is unconditional stable due to cancellation of second dominant pole by a zero. Ample simulations are performed using HSPICE and TSMC 0.18 µm CMOS technology to verify robustness of presented circuit. Simulation results show 114 dB, 6.66 MHz and 360 µW as DC gain, GBW and power consumption respectively.

Keywords

Three stages CMOS OTA Frequency compensation Differential feedback path Polezero cancellation 

References

  1. 1.
    Palumbo, G., & Pennisi, S. (2002). Feedback amplifiers: Theory and design. Boston, MA: Kluwer.Google Scholar
  2. 2.
    Grasso, A. D., Palumbo, G., & Pennisi, S. (2008). Analytical comparison of frequency compensation techniques in three-stage amplifiers. International Journal of Circuit Theory and Applications, 36, 53–80.CrossRefMATHGoogle Scholar
  3. 3.
    Grasso, A. D., Marano, D., Palumbo, G., & Pennisi, S. (2010). Analytical comparison of reversed nested Miller frequency compensation techniques. International Journal of Circuit Theory and Applications, 38, 709–737.CrossRefMATHGoogle Scholar
  4. 4.
    Biabanifard, S., Largani, S. M., Akbari, M., Asadi, S., & Yagoub, M. C. (2015). High performance reversed nested Miller frequency compensation. Analog Integrated Circuits and Signal Processing, 85(1), 223–233.CrossRefGoogle Scholar
  5. 5.
    Mita, R., Palumbo, G., & Pennisi, S. (2003). Design guidelines for reversed nested Miller compensation in three-stage amplifiers. IEEE Transactions on Circuits and Systems-II, 50, 227–233.CrossRefGoogle Scholar
  6. 6.
    Ho, K. P., Chan, C. F., Choy, C. S., & Pun, K. P. (2003). Reversed nested Miller compensation with voltage buffer and nulling resistor. IEEE Journal of Solid-State Circuits, 38, 1735–1738.CrossRefGoogle Scholar
  7. 7.
    Grasso, A. D., Palumbo, G., & Pennisi, S. (2007). Improved reversed nested miller frequency compensation technique with voltage buffer and resistor. IEEE Transactions on Circuits and Systems II: Express Briefs, 54, 382–386.CrossRefGoogle Scholar
  8. 8.
    Grasso, A. D., Palumbo, G., & Pennisi, S. (2007). Advances in reversed nested Miller compensation. IEEE Transactions on Circuits Systems I: Regular Papers, 54, 1459–1470.CrossRefGoogle Scholar
  9. 9.
    Zu, F., Yan, S., Hu, J., & Sanchez-Sinencio, E. (2005). Feedforward reversed nested Miller compensation techniques for three-stage amplifiers. In IEEE International Symposium on Circuits and Systems, Kobe, Japan (Vol. 1, pp. 2575–2578).Google Scholar
  10. 10.
    Lee, H., & Mok, P. K. T. (2003). Active-feedback frequency compensation technique for low power multistage amplifiers. IEEE Journal of Solid-State Circuits, 38(3), 511–520.CrossRefGoogle Scholar
  11. 11.
    Peng, X., & Sansen, W. M. (2004). AC boosting compensation scheme for low-power multistage amplifiers. IEEE Journal of Solid-State Circuits, 39(11), 2074–2077.CrossRefGoogle Scholar
  12. 12.
    Largani, H., Mehdi, S., Shahsavari, S., Biabanifard, S., & Jalali, A. (2014). A new frequency compensation technique for three stages OTA by differential feedback path. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 28, 381.CrossRefGoogle Scholar
  13. 13.
    Shahsavari, S., et al. (2015). DCCII based frequency compensation method for three stage amplifiers. AEU-International Journal of Electronics and Communications, 69(1), 176–181.CrossRefGoogle Scholar
  14. 14.
    Akbari, M., Biabanifard, S., Asadi, S., & Yagoub, M. C. (2014). Design and analysis of DC gain and transconductance boosted recycling folded cascode OTA. AEU-International Journal of Electronics and Communications, 68, 1047.CrossRefGoogle Scholar
  15. 15.
    Cannizzaro, S. O., et al. (2007). Design procedures for three-stage CMOS OTAs with nested-Miller compensation. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(5), 933–940.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Leung, K. N., & Mok, P. K. T. (2001). Nested Miller compensation in low-powerCMOS design. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(4), 388–394.CrossRefGoogle Scholar
  17. 17.
    Peng, X., & Sansen, W. (2004). AC boosting compensation scheme for low-power multi-stage amplifiers. IEEE Journal of Solid-State Circuits, 39(11), 2074–2079.CrossRefGoogle Scholar
  18. 18.
    Leung A. K. N, Mok P. K., Ki W. H., & Sin J. K. (1999) Damping-factor-control frequency compen-sation technique for low-voltage low-power large capacitive load applications. In Solid-State Circuits Conference, 1999 (pp. 158–159). Digest of Technical Papers. ISSCC. 1999 IEEE International. IEEE.Google Scholar
  19. 19.
    Lee, H., & Mok, P. K. (2003). Active-feedback frequency-compensation technique for low-power multistage amplifiers. IEEE Journal of Solid-State Circuits, 38(3), 511–520.CrossRefGoogle Scholar
  20. 20.
    You, F., Embabi, S. H., & Sanchez-Sinencio, E. (1997). Multistage amplifier topologies with nested G m-C compensation. IEEE Journal of Solid-State Circuits, 32(12), 2000–2011.CrossRefGoogle Scholar
  21. 21.
    Shahsavari, S., Biabanifard, S., Largani, S., & Hashemipour, O. (2014). DCCII based frequency compensation method for three stage amplifiers. AEU-International Journal of Electronics and Communications, 29, 176.Google Scholar
  22. 22.
    Ramazani, A., Biabani, S., & Hadidi, G. (2014). CMOS ring oscillator with combined delay stages. AEU-International Journal of Electronics and Communications, 68(6), 515–519.CrossRefGoogle Scholar
  23. 23.
    Biabanifard, M., et al. (2015). Bulk-driven current conveyer based-CMOS analog multiplier. Electrical and Electronics Engineering: An International Journal (ELELIJ), 4, 55–62.Google Scholar
  24. 24.
    Akbari, M., Sadegh B., & Omid H. (2014) Design of ultra-low-power CMOS amplifiers based on flicker noise reduction. In 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE.Google Scholar
  25. 25.
    Shahsavari, S., et al. (2014) A new frequency compensation method based on differential current conveyor. In 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE.Google Scholar
  26. 26.
    Largani, S. M. H., et al. A new SMC compensation strategy for three stage amplifiers based on differential feedback path. In 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Iran Analog Research GroupTehranIran
  2. 2.Microelectronics LaboratoryIran Analog Research GroupTehranIran
  3. 3.Department of Electrical EngineeringShahid Beheshti University, G. C.TehranIran

Personalised recommendations