Skip to main content
Log in

Over rail-to-rail fully differential voltage-to-current converters for nm scale CMOS technology

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The converters presented in this paper are based on long channel complementary MOS transistors, instead of the commonly used differential amplifiers or differential transistor pairs which are difficult to implement in low voltage, nm scale CMOS technology. Nonlinearities of drain currents can be cancelled in the fully differential structure. As a result, the low power, nanometre standard digital CMOS technology converters are obtained. Layout examples are designed in 65 nm TSMC technology. Post-layout simulations show that the range of input voltage over rail-to-rail is achieved with very good linearity and reduced harmonic distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Lopez-Martin, A. J., Esparza-Alfaro, F., Ramirez-Angulo, J., & Carvajal, R. G. (2011) Accurate micropower class AB CMOS voltage-to-current converter. In 20th European conference on circuit theory and design (ECCTD) (pp. 114–117).

  2. Hassen, N., Gabbouj, H. B., & Besbes, K. (2011). Low-voltage high-performance current mirrors: Application to linear voltage-to-current converter. International Journal of Circuit Theory and Applications, 39, 47–60.

    Article  Google Scholar 

  3. Azcona, C., Calvo, B., Celma, S., Medrano, N., & Martinez, P. A. (2013). Low-voltage low-power CMOS rail-to-rail voltage-to-current converters. IEEE Transactions on Circuits and Systems I, 60(9), 2333–2342.

    Article  MathSciNet  Google Scholar 

  4. Hung, C.-C., Ismail, M., Halonen, K., & Porra, V. (1999). A low-voltage rail-to-rail CMOS VI converter. IEEE Transactions on Circuits and Systems II, 46(6), 816–820.

    Article  Google Scholar 

  5. Lopez-Martin, A. J., Ramirez-Angulo, J., Durbha, C., & Carvajal, R. G. (2005). A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion. IEEE Journal of Solid-State Circuits, 40(5), 1078–1083.

    Article  Google Scholar 

  6. Brandolini, M., Shin, Y. J., Raviprakash, K., Wang, T., Rong, W., Geddada, H. M., et al. (2015). A 5 GS/s 150 mW 10 b SHA-less pipelined/SAR hybrid ADC for direct-sampling systems in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 50(12), 2922–2934.

    Article  Google Scholar 

  7. Szczesny, S. (2016). High speed and low sensitive current-mode CMOS perceptron. Microelectronic Engineering, 165, 41–51.

    Article  Google Scholar 

  8. Bai, Y., Song, Y., Bojnordi, M. N., Shapiro, A., Friedman, E. G., & Ipek, E. (2016). Back to the future: Current-mode processor in the era of deeply scaled CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(4), 1266–1279.

    Article  Google Scholar 

  9. Singh, S. P., Hanson, J. V., & Vlach, J. (1990). Simple high-frequency CMOS transconductor. IEE Proceedings G, 137(6), 470–474.

    Google Scholar 

  10. Raut, R. (1996). Wideband CMOS transconductor for analog VLSI systems. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 43(11), 775–776.

    Article  Google Scholar 

  11. Szczȩsny, S. (2017). Current-mode FPAA with CMRR elimination and low sensitivity to mismatch. Circuits, Systems, and Signal Processing, 36(7), 2672–2696.

    Google Scholar 

  12. Szczȩsny, S., Naumowicz, M., & Handkiewicz, A. (2012). SI-Studio—environment for SI circuits design automation. Bulletin of The Polish Academy of Sciences, Technical Sciences, 60(4), 757–762.

    Google Scholar 

  13. Handkiewicz, A., Szczȩsny, S., Naumowicz, M., Katarzynski, P., Melosik, M., Sniatala, P., et al. (2015). SI-Studio, a layout generator of current mode circuits. Expert Systems with Applications, 42, 3205–3218.

    Article  Google Scholar 

  14. Wang, C.-C., Lee, T.-J., Li, C.-C., & Hu, R. (2006). An all-MOS high-linearity voltage-to-frequency converter chip with 520-kHz/V sensitivity. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(8), 744–747.

    Article  Google Scholar 

  15. Maloberti, F. (2001). Analog design for CMOS VLSI systems. Boston: Kluwer Academic Publishers.

    Google Scholar 

  16. Sa, Y.-H., Son, P.-H., Kim, K.-H., Kim, H.-S., Cha, H.-W. (2016). A design of new voltage to current converter with high linearity and wide tuning. In IEEE SoC Design Conference (ISOCC), South Korea.

  17. Niitsu, K., Ikeda, K., Muto, K., & Nakazato, K. (2017). Design, experimental verification, and analysis of a 1.8-V-input-range voltage-to-current converter using source degeneration for low-noise multimodal CMOS biosensor array. Japanese Journal of Applied Physics, 56, 01AH06-1–01AH06-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Handkiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handkiewicz, A., Szczȩsny, S. & Kropidłowski, M. Over rail-to-rail fully differential voltage-to-current converters for nm scale CMOS technology. Analog Integr Circ Sig Process 94, 139–146 (2018). https://doi.org/10.1007/s10470-017-1071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-017-1071-7

Keywords

Navigation