A low load- and cross-regulation SIDO converter using an adaptive current sensor and LDO regulator with a selectable charge pump for mobile devices

  • Young-Ho Jung
  • Seong-Kwan Hong
  • Oh-Kyong KwonEmail author


In this paper, a single-inductor dual-output (SIDO) converter is proposed to generate stable output voltages with low load- and cross-regulations for mobile applications. The proposed converter, which operates in the buck–boost or boost mode, employs an adaptive current sensor and a low-dropout regulator with a selectable charge pump to achieve low load- and cross-regulations. In addition, an error amplifier and comparators are implemented to provide stable dual output voltages of 1.8 and 3.3 V at an input voltage range of between 1.0 and 3.2 V. The proposed SIDO converter was fabricated using a 0.18-μm CMOS process technology and occupies a chip area of 1568 μm × 728 μm. The measurement results show that the maximum power efficiency, load-regulation, and cross-regulation are 89.2%, 0.120 and 0.088 mV/mA, respectively, when the load current changes from 10 to 50 mA.


Buck–boost converter Cross-regulation Current sensor DC–DC converter Load transient Single-inductor multiple-output (SIMO) 



This work was supported by the Silicon Mitus Company.


  1. 1.
    Sze, N., Su, F., Lam, Y., Ki, W., & Tsui, C. (2008). Integrated single-inductor dual-input dual-output boost converter for energy harvesting applications. In Proceedings of IEEE ISCAS (pp. 2218–2221).Google Scholar
  2. 2.
    Penella, M. T., & Gasulla, M. (2010). Runtime extension of low-power wireless sensor nodes using hybrid-storage units. IEEE Transactions on Instrumentation and Measurement, 59(4), 857–865.CrossRefGoogle Scholar
  3. 3.
    Nakase, Y., Ido, Y., Oishi, T., Kumamoto, T., & Shimizu, T. (2013). Wide input range from 80 mV to 3 V operation on-chip single-inductor dual-output (SIDO) DC–DC boost converter with self-adjusting clock duty for sensor network applications. In IEEE Asian Solid-State Circuits Conference (A-SSCC) (pp. 41–44).Google Scholar
  4. 4.
    Ma, D., Ki, W. H., & Tsui, C. Y. (2003). A pseudo-CCM/DCM SIMO switching converter with freewheel switching. IEEE Journal of Solid-State Circuits, 38(6), 1007–1014.CrossRefGoogle Scholar
  5. 5.
    Bonizzoni, E., Borghetti, F., Malcovati, P., Maloberti, F., & Niessen, B. (2007). A 200 mA 93% peak efficiency single-inductor dual-output DC–DC buck converter. In IEEE ISSCC Digest of Technical Papers (pp. 526–619).Google Scholar
  6. 6.
    Leung, C. Y., Mok, P. K. T., & Leung, K. N. (2005). A 1-V integrated current mode boost converter in standard 3.3/5-V CMOS technologies. IEEE Journal of Solid-State Circuits, 40(11), 2265–2274.CrossRefGoogle Scholar
  7. 7.
    Belloni, M., Bonizzoni, E., Kiseliovas, E., Malcovati, P., Maloberti, F., Peltola, T., et al. (2008). A 4-output single-inductor DC–DC buck converter with self-boosted switch drivers and 1.2 A total output current. In IEEE ISSCC Digest of Technical Papers (pp. 444–626).Google Scholar
  8. 8.
    Le, H.-P., Chae, C.-S., Lee, K.-C., Wang, S.-W., Cho, G.-H., & Cho, G.-H. (2007). A single-inductor switching DC–DC converter with five outputs and ordered power-distributive control. IEEE Journal of Solid-State Circuits, 42(12), 2706–2714.CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., & Ma, D. (2014). A fast-response hybrid SIMO power converter with adaptive current compensation and minimized cross-regulation. IEEE Journal of Solid-State Circuits, 49(5), 1242–1257.CrossRefGoogle Scholar
  10. 10.
    Xu, W., Li, Y., Hong, Z., & Killat, D. (2011). A 90% peak efficiency single-inductor dual-output buck–boost converter with extended-PWM control. In IEEE ISSCC Digest of Technical Papers (pp. 394–396).Google Scholar
  11. 11.
    Huang, M.-H., Tsai, Y.-N., & Chen, K.-H. (2013). Freewheel charge-pump controlled single-inductor multiple-output step-up DC–DC converter. Analog Integrated Circuit Signal Processing, 74(1), 215–225.CrossRefGoogle Scholar
  12. 12.
    Lee, Y.-H., Yang, Y.-Y., Wang, S.-J., Chen, K.-H., Lin, Y.-H., Chen, Y.-K., et al. (2011). Interleaving energy-conservation mode (IECM) control in single-inductor dual-output (SIDO) step-down converters with 91% peak efficiency. IEEE Journal of Solid-State Circuits, 46(4), 904–914.CrossRefGoogle Scholar
  13. 13.
    Lee, Y.-H., Huang, T.-C., Yang, Y.-Y., Chou, W.-S., Chen, K.-H., Huang, C.-C., et al. (2011). Minimized transient and steady-state cross regulation in 55-nm CMOS single-inductor dual-output (SIDO) stepdown DC–DC converter. IEEE Journal of Solid-State Circuits, 46(11), 2488–2499.CrossRefGoogle Scholar
  14. 14.
    Erickson, R. W., & Maksimovic, D. (2001). Fundamentals of power electronics (2nd ed.). Boston: Kluwer.CrossRefGoogle Scholar
  15. 15.
    Gray, P., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits (4th ed.). New York: Wiley.Google Scholar
  16. 16.
    Shih, C.-J., Chu, K.-Y., Lee, Y.-H., & Chen, K.-H. (2011). Hybrid buck-linear (HBL) technique for enhanced dip voltage and transient response in load-preparation buck (LPB) converter. In Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC) (pp. 431–434).Google Scholar
  17. 17.
    Ertl, H., Kolar, J. W., & Zach, F. C. (1997). Basic considerations and topologies of switched-mode assisted linear power amplifiers. IEEE Transaction on Industrial Electronics, 44(1), 116–123.CrossRefGoogle Scholar
  18. 18.
    Van der Zee, R. A. R., & van Tuijl, A. J. M. (1999). A power-efficient audio amplifier combining switching and linear techniques. IEEE Journal of Solid-State Circuits, 34(7), 985–991.CrossRefGoogle Scholar
  19. 19.
    Stauth, J. T., & Sanders, S. R. (2007). Optimum biasing for parallel hybrid switching-linear regulators. IEEE Transaction on Power Electronics, 22(5), 1978–1985.CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Zhan, C., & Ki, W.-H. (2012). A fast-transient-response hybrid buck converter with automatic and nearly-seamless loop transition for portable applications. In Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC) (pp. 165–168).Google Scholar
  21. 21.
    Teh, C. K., & Suzuki. A. (2016). A 2-output step-up/step-down switched-capacitor DC–DC converter with 95.8% peak efficiency and 0.85-to-3.6 V input voltage range. In IEEE ISSCC Digest of Technical Papers (pp. 222–223).Google Scholar
  22. 22.
    Schaef, C., Kesarwani, K., & Stauth, J. T. (2015). A variable-conversion-ratio 3-phase resonant switched capacitor converter with 85% efficiency at 0.91 W/mm2 Using 1.1 nH PCB-trace inductors. In IEEE ISSCC Digest of Technical Papers (pp. 360–361).Google Scholar
  23. 23.
    Texas Instruments. (2016). TPS60150 5-V, 140-mA charge-pump. Accessed Dec 2008.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Hanyang UniversitySeoulSouth Korea

Personalised recommendations