Secret key generation scheme from WiFi and LTE reference signals

  • Christiane L. Kameni Ngassa
  • Renaud Molière
  • François Delaveau
  • Alain Sibille
  • Nir Shapira


Physical layer security has emerged as a promising approach to strengthen security of wireless communications. Particularly, extracting secret keys from channel randomness has attracted an increasing interest from both academic and industrial research groups. In this paper, we present a complete implantation of a secret key generation (SKG) protocol which is compliant with existing widespread Radio Access Technologies. This protocol performs the quantization of the channel state information, then information reconciliation and privacy amplification. We also propose an innovative algorithm to reduce the correlation between quantized channel coefficients that significantly improves the reliability and the resilience of the complete SKG scheme. Finally we assess the performance of our protocol by evaluating the quality of secret keys generated in various propagation environments from real single sense LTE signals, and real single and dual sense WiFi signals.


Physical layer security Radio networks Radio channel Secret key generation Privacy 


  1. 1.
    ZEIT, Wie Merkels Handy abgehört werden konnte. Available: 18 Dec 2014.
  2. 2.
  3. 3.
    I. Surveillance, Rayzone-piranha-lte-imsi-catcher, [En ligne]. Available:
  4. 4.
    T. intercept, The Great SIM Heist, Hows Spies kept the key of the Encrypton Castle, [En ligne]. Available:
  5. 5.
    Wallace, J., & Sharma, R. (2010). Automatic secret keys from reciprocal MIMO Wireless channels: measurement and analysis. IEEE Transactions on Information Forensics and Security, 5(3), 381–392.CrossRefGoogle Scholar
  6. 6.
    He H. D. X. (2013). Is link signature dependable for Wireless Security?. In Proceeding IEEE INFOCOM, pp. 200–204.Google Scholar
  7. 7.
    Maurer, U., & Wolf, S. (2003). Secret-key agreement over unauthenticated public channels. II. Privacy amplification. IEEE Transactions on Information Theory, 49(14), 839–851.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dodis, Y., Reyzin, L., & Smith, A. (2004). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In C. Cachin & J. L. Camenisch (Eds.), Advances in Cryptology—EUROCRYPT. Lecture notes in computer science (Vol. 3027, pp. 523–540). Springer-Verlag.Google Scholar
  9. 9.
    Bennett, C., Brassard, G., Crepeau, C., & Maurer, U. (1995). Generalized privacy amplification. IEEE Transactions on Information Theory, 41(6), 1915–1923.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    National Institute of Standards and Technology Special Publication 800-22 revision 1a. (2010). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.Google Scholar
  11. 11.
    National Institute of Standards and Technology Special Publication 800-90B (Second DRAFT). (2016). Recommendation for the Entropy Sources Used for Random Bit Generation.Google Scholar
  12. 12.
    Hamburg, M., Kocher, P., & Marson, M. E. (2012). Analysis of Intel’s Ivy Bridge Digital Random Number Generator. Technical Report Cryptographic research INC.Google Scholar
  13. 13.
    Hamburg, M., Kocher, P., & Marson, M. E. (2012). Analysis of Intel’s Ivy Bridge Digital Random Number Generator.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christiane L. Kameni Ngassa
    • 1
  • Renaud Molière
    • 1
  • François Delaveau
    • 1
  • Alain Sibille
    • 2
  • Nir Shapira
    • 3
  1. 1.Thales Communications and Security (TCS)GennevilliersFrance
  2. 2.Telecom ParisTech (TPT)ParisFrance
  3. 3.Celeno CommunicationsRa’ananaIsrael

Personalised recommendations