Skip to main content
Log in

Multilevel outphasing system using six-port modulators and doherty power amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a simple and efficient architecture for implementation of multilevel outphasing systems is presented. The architecture consists of a six-port modulator and a Doherty power amplifier in each outphasing branch. Pin diodes are used as variable impedances of the six-port modulator and their parasitic elements are analytically compensated. A prototype of the variable load is fabricated and the results show the effectiveness of compensation method to prepare pin diodes as variable loads for a six-port modulator. As a proof of concept, a standard 2.4 GHz Doherty power amplifier is designed with 65% efficiency at peak power and 46% efficiency at 6 dB back off. The proposed system is simulated in advanced design system using a 20 MHz WLAN signal with 7.5 dB PAPR and 5 level outphasing. Simulation results show 31.6% power added efficiency for the Doherty-Outphasing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mohammadi, A., & Ghannouchi, F. M. (2012). RF transceiver design for MIMO wireless communications. Berlin: Springer.

    Book  Google Scholar 

  2. Cox, D. C. (1974). Linear amplification with nonlinear components. IEEE Transactions on Communications, 22(12), 1942–1945.

    Article  Google Scholar 

  3. Godoy, P. A., Perreault, D. J., & Dawson, J. L. (2009). Outphasing energy recovery amplifier with resistance compression for improved efficiency. IEEE Transactions on Microwave Theory and Techniques, 57(12), 2895–2906.

    Article  Google Scholar 

  4. Langridge, R., Thornton, T., Asbeck, P. M., & Larson, L. E. (1999). A power re-use technique for improved efficiency of outphasing microwave power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 47(8), 1467–1470.

    Article  Google Scholar 

  5. Godoy, P. A., Chung, S. W., Barton, T. W., Perreault, D. J., & Dawson, J. L. (2012). A 2.4-GHz, 27-dBm asymmetric multilevel outphasing power amplifier in 65-nm CMOS. IEEE Journal of Solid State Circuits, 47(10), 2372–2384.

    Article  Google Scholar 

  6. Lee, H., Jang, S., & Hong, S. (2013). A hybrid polar-LINC CMOS power amplifier with transmission line transformer combiner. IEEE Transactions on Microwave Theory and Techniques, 61(3), 1261–1271.

    Article  Google Scholar 

  7. Barton, T. W., & Perreault, D. J. (2015). Theory and implementation of RF-input outphasing power amplification. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4273–4283.

    Article  Google Scholar 

  8. Yahalom, G., & Dawson, J. L. (2014). A fast settling phase modulator for outphasing transmitters in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 62(9), 2048–2058.

    Article  Google Scholar 

  9. Mehrjoo, M. S., Zihir, S., Rebeiz, G. M., & Buckwalter, J. F. (2015). A 1.1-Gbit/s 10-GHz outphasing modulator with 23-dBm output power and 60-dB dynamic range in 45-nm CMOS SOI. IEEE Transactions on Microwave Theory and Techniques, 63(7), 2289–2300.

    Article  Google Scholar 

  10. Jheng, K.-Y., Chen, Y.-C., & Wu, A.-Y. (2009). Multilevel LINC system designs for power efficiency enhancement of transmitters. IEEE Journal of Selected Topics in Signal Processing, 3(3), 523–532.

    Article  Google Scholar 

  11. Aref, A. F., Hone, T. M., & Negra, R. (2015). A study of the impact of delay mismatch on linearity of outphasing transmitters. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1), 254–262.

    Article  Google Scholar 

  12. Crama, P., & Rolain, Y. (2002). Broadband measurement and identification of a Wiener–Hammerstein model for an RF amplifier. In 60th ARFTG Conference Digest (pp. 49–57). Washington, DC.

  13. Lim, H.-S., Kim, W.-K., Yu, J.-W., Park, H.-C., Byun, W.-J., & Song, M.-S. (2007). Compact six-port transceiver for time-division duplex systems. IEEE Microwave and Wireless Components Letters, 17(5), 394–396.

    Article  Google Scholar 

  14. Östh, J., Karlsson, M., Serban, A., Gong, S., & Karlsson, P. (2011). Direct carrier six-port modulator using a technique to suppress carrier leakage. IEEE Transactions on Microwave Theory and Techniques, 59(3), 741–747.

    Article  Google Scholar 

  15. Mirzavand, R., Mohammadi, A., & Abdipour, A. (2009). Low-cost implementation of broadband microwave receivers in Ka-band using multiport structures. Microwaves Antennas and Propagation IET, 3(3), 483–491.

    Article  Google Scholar 

  16. Mirzavand, R., Mohammadi, A., & Ghannouchi, F. M. (2010). Five-port microwave receiver architectures and applications. Communications Magazine IEEE, 48(6), 30–36.

    Article  Google Scholar 

  17. Beikmirza, M., Mohammadi, A., & Mirzavand, R. Power amplifier linearization using digital predistortion and multi-port techniques. IET Science Measurement and Technology, Accepted Manuscript.

  18. Song, X., et al. (2016). Integrating baseband-over-fiber and six-port direct modulation for high-speed high-frequency wireless communications. In 2016 IEEE MTT-S International Microwave Symposium (IMS) (pp. 1–4). San Francisco, CA.

  19. Wang, F., Kimball, D., Popp, J., Yang, A., Lie, D. Y. C., & Asbeck, P., et al. (2005). Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11 g applications. In 2005 IEEE MTT-S International Microwave Symposium Digest (p. 4).

  20. Luo, B., & Chia, M. Y. W. (2008). Direct 16 QAM six-port modulator. Electronics Letters, 44(15), 910–911.

    Article  Google Scholar 

  21. Ibrahim, S. Z., Abbosh, A. M., & Antoniades, M. A. (2012). Direct quadrature phase shift keying modulation using compact wideband six-port networks. Microwaves Antennas and Propagation IET, 6(8), 854–861.

    Article  Google Scholar 

  22. Osth, J., Karlsson, M., Serban, A., & Gong, S. (2013). M-QAM six-port modulator using only binary baseband data, electrical or optical. IEEE Transactions on Microwave Theory and Techniques, 61(6), 2506–2513.

    Article  Google Scholar 

  23. Markos, A. Z., Colantonio, P., Giannini, F., Giofré, R., Imbimbo, M., & Kompa, G. (2007). A 6W uneven doherty power amplifier in GaN technology. In Proceedings of European Microwave Conference, 2007 (pp. 1097–1100).

  24. Cripps, S. C. (2006). RF power amplifiers for wireless communications (2nd ed.). Norwood, MA: Artech House Publishers.

    Google Scholar 

  25. Pham, A. (2005). Outphase power amplifiers in OFDM systems. Ph.D. dissertation, Department of Electrical Engineering and Computer Science. Cambridge, MA: Mass. Institute of Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Moazzen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moazzen, H., Mohammadi, A. & Mirzavand, R. Multilevel outphasing system using six-port modulators and doherty power amplifiers. Analog Integr Circ Sig Process 90, 361–372 (2017). https://doi.org/10.1007/s10470-016-0908-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0908-9

Keywords

Navigation