Skip to main content
Log in

A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A linear and wide dynamic range transimpedance amplifier (TIA) for the pulsed time-of-flight imaging LADAR application has been designed and simulated in a 0.18 μm 3.3 V CMOS technology. Specific design techniques, including adaptive gain control technique to widen linear dynamic range, pseudo-differential structure of the front end to decrease the common-mode noise and noise minimization to improve SNR, have been proposed to achieve challenging designs goals with linear dynamic range of 5000:1, high transimpedance gain of 89 dB Ω, bandwidth up to 150 MHz, equivalent input-referred noise current less than 8 \({\text{pA}}/\sqrt {\text{Hz}}\), in 2 pF photodiode parasitic capacitance. The proposed TIA consumes 165 mW with 3.3 V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Kaisto, I. P., Kostamovaara, J. T., Moring, I., & Myllylae R. A. (1990). Laser range finding techniques in the sensing of 3-D objects. SCDL tentative, 1260 (pp. 122-133). International Society for Optics and Photonics.

  2. Ngo, T. H., Kim, C. H., et al. (2013). Wideband receiver for a three-dimensional ranging Ladar system. IEEE Transactions on Circuits and Systems-I: Regulator Paper, 60(2), 448–456.

    Article  MathSciNet  Google Scholar 

  3. Ruotsalainen, T., Palojarvi, P., & Kostamovaara, J. (2001). A wide dynamic range receiver channel for a pulsed time-of-flight laser radar. IEEE Journal of Solid-State Circuits, 36(8), 1228–1238.

    Article  Google Scholar 

  4. Nissinen, J., Nissinen, I., & Kostamovaara, J. (2009). Integrated receiver including both receiver channel and TDC for a pulsed time-of-flight laser rangefinder with cm-level accuracy. IEEE Journal of Solid-State Circuits, 44(5), 1486–1497.

    Article  Google Scholar 

  5. Micusik, D., & Zimmermann, H. (2007). Transimpedance amplifier with 120 dB dynamic range. Electronics Letters, 43(3), 159–160.

    Article  Google Scholar 

  6. Williams, G. M., & Huntington, A. S. (2006). Probabilistic analysis of linear mode vs. geiger mode APD FPAs for advanced LADAR enabled interceptors. In Defense and security symposium international society for optics and photonics, 6220 (pp. 622008–622008–14), SPIE.

  7. Yamashita, S., Ide, S., Mori, K., Hayakawa, A., Ueno, N., & Tanaka, K. (2002). Novel cell-AGC technique for burst-mode CMOS preamplifier with wide dynamic range and high sensitivity for ATM-PON system. IEEE Journal of Solid-State Circuits, 37(7), 182–185.

    Article  Google Scholar 

  8. Hassan M, Zimmermann H. (2011). An 85 dB dynamic range transimpedance amplifier in 40 nm CMOS technology. In NORCHIP, (pp. 1–4). IEEE.

  9. Cura J. L., & Aguiar R. L. (2001). Dynamic range boosting for wireless optical receivers. In IEEE international symposium on circuits and systems (ISCAS), (pp. 686–689). IEEE.

  10. Liu, L., Zou, J., Ma, N., et al. (2015). A CMOS transimpedance amplifier with high gain and wide dynamic range for optical fiber sensing system. Optik—International Journal for Light and Electron Optics, 126(15–16), 1389–1393.

    Article  Google Scholar 

  11. Cho, H. S., Kim, C. H., & Lee, S. G. (2014). A high-sensitivity and low-walk error LADAR receiver for military application. IEEE Transactions on Circuits and Systems-I: Regular Papers, 61(10), 3007–3015.

    Article  Google Scholar 

  12. Huang, L. W., Hsieh, C. C., Chang, W. H., et al. (2011). A 1.8 V readout integrated circuit with adaptive transimpedance control amplifier for IR focal plane arrays. IEEE Sensors, 25(35), 1145–1148.

    Google Scholar 

  13. Kurtti, S., & Kostamovaara, J. (2009). Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping. IEEE Journal of Solid-State Circuits, 44(3), 835–847.

    Article  Google Scholar 

  14. Atef, M., & Zimmermann, H. (2013). Low-power 10 GB/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm cmos. Analog Integrated Circuits and Signal Processing, 76(3), 367–376.

    Article  Google Scholar 

  15. Escid, H., Salhi, S., & Slimane, A. (2013). Bandwidth enhancement for 0.18 μm CMOS transimpedance amplifier circuit. In Microelectronics (ICM), 2013 25th international conference on IEEE, (pp. 1–4). IEEE.

  16. Li, D., Minoia, G., Repossied, M., et al. (2014). Low-noise design technique for high-speed CMOS optical receivers. IEEE Journal of Solid-State Circuits, 49(6), 1437–1447.

    Article  Google Scholar 

  17. van der Ziel, A. (1986). Noise in solid state devices and circuits. New York: Wiley.

    Google Scholar 

  18. CarusoneT, C., Johns, D. A., & Martin, K. W. (2012). Analog integrated circuit design. New York: Wiley.

    Google Scholar 

  19. Baker, R. J. (2010). CMOS circuit design, layout, and simulation. New York: Wiley-IEEE Press.

    Book  Google Scholar 

  20. Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61234002, 61322405, 61306044, 61376033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangming Zhu.

Appendix

Appendix

The Fig. 8 shows the simplified the noise model of the proposed TIA, the transfer function from \(I_{in}\) to the output (\(V_{out}\)) is found by using KCL method to be

$$\frac{{V_{out} (s)}}{{I_{in} (s)}} = R_{F} \times \frac{{A_{V1} }}{{1 + A_{V1} }} \times A_{V} \times \frac{1}{{1 + s\frac{{C_{tot} (R_{F} + r_{ds} )}}{{1 + A_{V1} }}}}$$
(13)

where \(A_{V} = A_{V2} A_{V3} A_{V4}\), \(r_{ds}\) is output resistance of the push–pull inverter shown in Fig. 5(a). The gain from the noise source \(\overline{I_{{n,R_{F} }}^{2}}\) to the output (\(V_{out}\)) is

$$\frac{{V_{out} (s)}}{{I_{{n,R_{F} }} (s)}} = R_{F} \times \frac{{A_{V1} }}{{1 + A_{V1} }} \times A_{V} \times \frac{{1 + s\frac{{C_{tot} r_{ds} )}}{{A_{V1} }}}}{{1 + s\frac{{C_{tot} (R_{F} + r_{ds} )}}{{1 + A_{V1} }}}}$$
(14)

The gain from the noise source \(\overline{I_{D,MN1}^{2}} + \overline{I_{D,MP1}^{2}}\) to the output (\(V_{out}\)) is found by using nodal analysis to be

$$\frac{{V_{out} (s)}}{{I_{n,D} (s)}} = r_{ds} \times \frac{{A_{V1} }}{{1 + A_{V1} }} \times A_{V} \times \frac{{1 + sC_{tot} R_{F} }}{{1 + s\frac{{C_{tot} (R_{F} + r_{ds} )}}{{1 + A_{V1} }}}}$$
(15)

In order to refer the noise due to push pull inverter back to the input, we use above transfer function to obtain

$$\begin{aligned} \overline{I_{in,D}^{2}} = & \left( \overline{{I_{D,MN1}^{2}} + \overline{I_{D,MP1}^{2}} } \right)\left| {\frac{{V_{out} \left( s \right)}}{{I_{n,D} \left( s \right)}}} \right|^{2} /\left| {\frac{{V_{out} \left( s \right)}}{{I_{in} (s)}}} \right|^{2} \\ \, = \left( {\overline{I_{D,MN1}^{2}} + \overline{I_{D,MP1}^{2}} } \right)\frac{{1 + \omega^{2} (C_{tot} R_{F} )^{2} }}{{(g_{m} R_{F} )^{2} }} \\ \end{aligned}$$
(16)

we use

$$\overline{I_{D,MN1}^{2}} + \overline{I_{D,MP1}^{2}} = 4kT\gamma g_{m}$$
(17)

where \(k\) is Boltzmann’s constant and \(T\) is the absolute temperature. \(\gamma\) is the channel noise factor,\(g_{m} = g_{m,MN1} + g_{m,MP1}\). And we add to the input noise source that models the noise of the feedback resistor to obtain the total input-referred noise current, given by

$$\overline{I_{{in,R_{F} }}^{2}} = \frac{4kT}{{R_{F} }}\left[ {1 + \frac{\gamma }{{g_{m} R_{F} }}} \right] + \frac{4kT}{{g_{m} }}\omega^{2} C_{tot}^{2} \left[ {\gamma + \frac{1}{{g_{m} R_{F} }}} \right]$$
(18)

normally, \(\frac{\gamma }{{g_{m} R_{F} }} \ll 1\), then, we can obtain

$$\overline{I_{{in,R_{F} }}^{2}} \approx \frac{4kT}{{R_{F} }} + \frac{4kT}{{R_{F} }}\frac{{\omega^{2} C_{tot}^{2} }}{{g_{m}^{2} }} + 4kT\gamma \frac{{\omega^{2} C_{tot}^{2} }}{{g_{m} }}$$
(19)

using the fact [20] that: \(V_{eff} = \left| {V_{gs,MN1} - V_{th,MN1} } \right| = \left| {V_{gs,MP1} - V_{th,MP1} } \right|\), \(g_{m} = g_{m,MN1} + g_{m,MP1} = \frac{3}{{2L^{2} }}V_{eff} \left( {\mu_{n} C_{GS,MN1} + \mu_{p} C_{GS,MP1} } \right),\)we can write Eq. 19 as:

$$\overline{I_{{in,R_{F} }}^{2}} \approx \frac{4kT}{{R_{F} }} + \frac{16kT}{{9R_{F} }}\frac{{L^{4} \omega^{2} C_{tot}^{2} }}{{\left[ {V_{eff} (\mu_{n} C_{GS,MN1} + \mu_{p} C_{GS,MP1} )} \right]^{2} }} + \frac{8kT\gamma }{3}\frac{{L^{2} \omega^{2} C_{tot}^{2} }}{{V_{eff} (\mu_{n} C_{GS,MN1} + \mu_{p} C_{GS,MP1} )}}$$
(20)

normally, \(\gamma\) is derived to be equal to 2/3 [19], so, we rewrite the Eq. 20 as:

$$\overline{I_{{in,R_{F} }}^{2}} \approx \frac{4kT}{{R_{F} }} + \frac{16kT}{{9R_{F} }}\frac{{L^{4} \omega^{2} (C_{PD} + C_{PAD} + C_{GS,MN1} + C_{GS,MP1} )^{2} }}{{\left[ {V_{eff} (\mu_{n} C_{GS,MN1} + \mu_{p} C_{GS,MP1} )} \right]^{2} }} + \frac{16kT}{9}\frac{{L^{2} \omega^{2} (C_{PD} + C_{PAD} + C_{GS,MN1} + C_{GS,MP1} )^{2} }}{{V_{eff} (\mu_{n} C_{GS,MN1} + \mu_{p} C_{GS,MP1} )}}$$
(21)

The minimum input-referred noise current of the proposed TIA can be obtain by sizing MN1 an MP1 with shortest channel length, assuming \(W_{MP1} = 2W_{MN1}\), and \(\mu_{n} = 2\mu_{p}\), then \(C_{GS,MN1} = \frac{{C_{GS,MP1} }}{2}\). The total input-referred noise current can be approximately calculated by

$$\overline{I_{{in,R_{F} }}^{2}} \approx \frac{4kT}{{R_{F} }} + \frac{8kT}{9}\frac{{L^{2} \omega^{2} \left( {C_{PD} + C_{PAD} + 3C_{GS,MN1} } \right)^{2} }}{{V_{eff} \mu_{n} C_{GS,MN1} }}\left( {1 + \frac{1}{{2R_{F} }}\frac{{L^{2} }}{{V_{eff} \mu_{n} C_{GS,MN1} }}} \right)$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Ma, R. & Zhu, Z. A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique. Analog Integr Circ Sig Process 90, 217–226 (2017). https://doi.org/10.1007/s10470-016-0867-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0867-1

Keywords

Navigation