Skip to main content
Log in

A CMOS EEG detection system with a configurable analog front-end architecture

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a configurable analog front-end (AFE) chain architecture used in the EEG detection system. The proposed chain consists of three stages: the first and the third stages are instrumentation amplifier and programmable gain amplifier, respectively, and the second stage is notch filter with low pass feature. The proposed architecture relaxes the design of the notch filter and the analog-to-digital converter (ADC) used in building the EEG detection system. A basic building block is the digitally programmable balanced output operational transconductance amplifier (DPOTA), which is proposed to realize the AFE blocks. A successive-approximation ADC (SA-ADC) architecture is mostly designed on digital circuits in order to lower the power dissipation. Based on this, PSpice post layout simulation results for the overall EEG detection system using 0.25-µm CMOS technology are also given. The overall configurable gain/filtering chain architecture has a total gain ranging from 61 to 84 dB, a total power dissipation of 32 µW and input referred noise spectral density of 4 µV/ \(\sqrt {\text{Hz}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Northrop, R. B. (2003). Analysis and application of analog electronic circuits to biomedical instrumentation (1st ed.). Boca Raton: CRC Press LLC.

    Book  Google Scholar 

  2. Wu, R., Huijsing, J. H., & Makinwa, K. A. A. (2013). Precision instrumentation amplifiers and read-out integrated circuits, analog circuits and signal processing. New York: Springer.

    Book  Google Scholar 

  3. Mahmoud, S. A. & Alhammadi, A. A. (2015). A CMOS digitally programmable OTA based instrumentation amplifier for EEG detection system. In IEEE international conference electronics, circuits, and systems (pp. 543–546). Egypt.

  4. Mahmoud, S. A., Hashiesh, M. A., & Soliman, A. M. (2005). Low-voltage digitally controlled fully differential current conveyor. 0, 52(10), 2055–2064.

    Google Scholar 

  5. Alhammadi A. A., & Mahmoud S. A. “Fully differential fifth-order dual-notch powerline interference filter oriented to EEG detection system with low pass feature.” Microelectron Journal. unpublished.

  6. Shaker, M. O., Mahmoud, S. A., & Soliman, A. M. (2006). New CMOS fully-differential transconductor and application to fully-differential Gm-C filters. ETRI Journal, 28(2), 175–181.

    Article  Google Scholar 

  7. Lewinski, A. J., & Silva-Martinez, J. (2007). “A 30-MHz fifth-order elliptic low-pass CMOS filter with 65-dB spurious-free dynamic range”. IEEE Transactions Circuits and Systems I: Regular Papers, 54(3), 469–480.

    Article  Google Scholar 

  8. Mahmoud, S. A., & Soliman, E. A. (2013). Multi-standard receiver baseband chain using digitally programmable OTA based on CCII and current division networks. Journal of Circuits, Systems, and Computers, 22(4), 1350019.

    Article  Google Scholar 

  9. Bult, K., & Geelen, G. J. M. (1992). An inherently linear and compact MOST-only current division technique. IEEE Journal of Solid-State Circuits, 27, 1730–1735.

    Article  Google Scholar 

  10. Hashiesh M. A., Mahmoud S. A., & Soliman A.M. (2004). Digitally controlled CMOS balanced output transconductor based on novel current-division network and its application. In The 47th IEEE international midwest symposium circuits system, Hiroshima (pp. 323–326).

  11. Mahmoud, S. A., Elwan, H. O., & Soliman, A. M. (2000). Low voltage rail to rail CMOS current feedback operational amplifier and its applications for analog VLSI. Analog Integrated Circuits and Signal Processing, 25, 47–57.

    Article  Google Scholar 

  12. Yazicioglu, R. F., Hoof, C. V., & Puers, R. (2009). Biopotential readout circuits for portable acquisition systems. New York: Springer.

    Book  Google Scholar 

  13. Li J. T., Pun S. H., Vai M. I, Mak P. U., Mak P. I., & Wan F. (2009). Design of current mode instrumentation amplifier for portable biosignal acquisition system. In 2009 IEEE Biomedical Circuits and Systems Conference, BioCAS, pp. 9–12. IEEE, 2009.

  14. Kwon, K., & Lee, K. (2011). A 23.4 mW 68 dB dynamic range low band CMOS hybrid tracking filter for ATSC digital TV tuner adopting RC and Gm-C topology. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(10), 2346–2354.

    Article  MathSciNet  Google Scholar 

  15. Kuo, K., & Leuciuc, A. (2001). A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(10), 937–943.

    Article  Google Scholar 

  16. Mobarak, M., Onabajo, M., Silva-Martinez, J., & Sanchez-Sinencio, E. (2010). Attenuation–predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE Journal of Solid-State Circuits, 45(2), 351–367.

    Article  Google Scholar 

  17. Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2014). Six order cascaded power line notch filter for ECG detection systems with noise shaping. Circuits, Systems, and Signal Processing. doi:10.1007/s00034-014-9761-1.

    Article  Google Scholar 

  18. Mahmoud S. A., Abdallah A., & Khalid S. (2013). A 5.2nV/√Hz noise density third-order FDNR filter for DVB-H mobile-TV receiver In The 20th IEEE International Conference on electronics, circuits and systems ICECS, 2013 (pp 739–742). Abu Dhabi: UAE.

  19. Mahmoud S. A., Salem H. A., & Albalooshi H. M. (2015). An 8-bit, 10KS/s, 1.87 μW successive approximation analog to digital converter in 0.25 μm CMOS technology for ECG detection systems. Circuits, Systems, and Signal Processing 34(2).

  20. Johns, D., & Martin, K. (2008). Analog integrated circuit design (2nd ed.). Hoboken: Wiley.

    MATH  Google Scholar 

  21. Schinkel D., Mensink E., Klumperink E., Tuijl E., & Nauta B. (2007). A double-tail latch-type voltage sense amplifier with 18 ps setup + hold time In IEEE International solid-state circuits conference (pp. 314–315). IEEE.

  22. Shaker, M. O., & Bayoumi, M. A. (2013). A clock gated successive approximation register for A/D converters. Journal of Circuits, Systems, and Computers, 23(2), 1–11.

    Google Scholar 

  23. S. A. Mahmoud and T. B. Nazzal. (2015). Sample and hold circuits for analog-to-digital converters,” In UAE graduate students research conference (UGSR 2015) (pp. 223–224).

  24. Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2013). Low noise low pass filter for ECG portable detection systems with digitally programmable range. Circuits, Systems, and Signal Processing, 32(5), 2029–2045.

    Article  MathSciNet  Google Scholar 

  25. Soares, C., De Moraes, G., & Petraglia, A. (2014). A low-transconductance OTA with improved linearity suitable for low-frequency Gm-C filters. Microelectronics Journal, 45(11), 1499–1507.

    Article  Google Scholar 

  26. Paraskevopoulou S. E., Eftekhar A., Kulasekeram N., & Toumazou C. (2015). A low-noise instrumentation amplifier with DC suppression for recording ENG signals. In 37th annual. international conference (pp. 2693–2696). IEEE EMBC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soliman A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhammadi, A.A., Nazzal, T.B. & Mahmoud, S.A. A CMOS EEG detection system with a configurable analog front-end architecture. Analog Integr Circ Sig Process 89, 151–176 (2016). https://doi.org/10.1007/s10470-016-0826-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0826-x

Keywords

Navigation