Skip to main content
Log in

Design, analysis and implementation of class-E ZCS/ZCDS power amplifier for any duty ratio with nonlinear output parasitic capacitance

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper gives the design and analysis approaches for the class-E power amplifier with a shunt inductor under the nominal conditions, i.e., zero-current switching (ZCS) and zero-current derivative switching (ZCDS), with taking into account the MOSFET nonlinear output parasitic capacitance at any duty ratio. Although, the class-E ZCS/ZCDS conditions obtained high-efficiency, but the switch-current waveform affected by the slope of the voltage across the MOSFET nonlinear drain-to-source parasitic capacitance during the switch-off state, which restricted the operating frequency. On the other hand, the duty ratio is an adjustment parameter to obtain high-frequency operation. Therefore, the duty ratio and the MOSFET nonlinear output parasitic capacitance are required to satisfy the class-E ZCS/ZCDS conditions. The verification of the proposed analysis expressions is performed by fabricating of the class-E power amplifier with the output power 13.2-W at the operating frequency 4-MHz, and the laboratory experiments are performed, which achieved 90.9 % power conversion efficiency. The validity of proposed analytical expressions had been proved by the achieved good agreement between waveforms obtained from the PSpice-simulations and circuit laboratory experiments, which satisfied both ZCS and ZCDS conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kazimierczuk, M. K. (2008). RF power amplifiers. New York: Wiley.

    Google Scholar 

  2. Kazimierczuk, M. K., & Czarkowski, D. (1995). Resonant power converters. New York: Wiley.

    Google Scholar 

  3. Lee, Y.-S., Lee, M.-W., & Jeong, Y.-H. (2009). A 40-W balanced GaN HEMT class-E power amplifier with 71% efficiency for WCDMA base station. Microwave and Optical Technology Letters, 51, 842–845.

    Article  Google Scholar 

  4. Sokal, N. O., & Sokal, A. D. (1975). Class E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE Journal of Solid-State Circuits, 10, 168–176.

    Article  Google Scholar 

  5. Hayati, M., Lotfi, A., Kazimierczuk, M. K., & Sekiya, H. (2015). Generalized design considerations and analysis of class-E amplifier for sinusoidal and square input voltage waveforms. IEEE Transactions on Industrial Electronics, 62, 211–220.

    Article  Google Scholar 

  6. Raab, F. H. (1977). Idealized operation of the class-E tuned power amplifier. IEEE Transactions on Circuits and Systems, 24, 725–735.

    Article  Google Scholar 

  7. Kazimierczuk, M. K. (1981). Class E tuned power amplifier with shunt inductor. IEEE Journal of Solid-State Circuits, 16, 2–7.

    Article  Google Scholar 

  8. Hayati, M., Lotfi, A., Kazimierczuk, M. K., & Sekiya, H. (2013). Performance study of class-E power amplifier with a shunt inductor at subnominal condition. IEEE Transactions on Transportation Electrification, 28, 3834–3844.

    Google Scholar 

  9. Kazimierczuk, M. K. (1983). Exact analysis of class-E tuned power amplifier with only one inductor and one capacitor in load network. IEEE Journal of Solid-State Circuits, 18, 214–221.

    Article  Google Scholar 

  10. Suetsugu, T., & Kazimierczuk, M. K. (2006). Design procedure of class-E amplifier for off-nominal operation at 50% duty ratio. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 1468–1476.

    Article  Google Scholar 

  11. Hayati, M., Lotfi, A., Kazimierczuk, M. K., & Sekiya, H. (2014). Analysis, design and implementation of class-E ZVS power amplifier with MOSFET nonlinear drain-to-source parasitic capacitance at any grading coefficient. EEE Transactions on Power Electronics, 29, 4989–4999.

    Article  Google Scholar 

  12. Avratoglou, C. P., & Voulgaris, N. C. (1988). A class-E tuned amplifier configuration with finite DC-feed inductance and no capacitance in parallel with switch. IEEE Transactions on Circuits and Systems, 35, 416–422.

    Article  MathSciNet  Google Scholar 

  13. Hayati, M., Lotfi, A., Kazimierczuk, M. K., & Sekiya, H. (2014). Modeling and analysis of class-E amplifier with a shunt inductor at sub-nominal operation for any duty ratio. IEEE Transactions on Circuits and Systems I: Regular Papers, 61, 987–1000.

    Article  Google Scholar 

  14. Mury, T., & Fusco, V. F. (2006). Analysis and synthesis of pHEMT class-E amplifiers with shunt inductor including on-state active-device resistance effects. IEEE Transactions on Circuits and Systems I: Regular Papers, 53, 1556–1564.

    Article  Google Scholar 

  15. Hayati, M., & Lotfi, A. (2014). Design of class-E power amplifier for zero-current switching operation with MOSFET nonlinear output parasitic capacitance. Microwave and Optical Technology Letters, 56, 801–808.

    Article  Google Scholar 

  16. Hayati, M., & Lotfi, A. (2014). Modeling and analysis of class-E zero-voltage switching amplifier at any grading coefficient and duty ratio. Journal of Electromagnetic Waves and Applications, 28, 655–668.

    Article  Google Scholar 

  17. Kazimierczuk, M. K., & Puczko, K. (1987). Exact analysis of class-E tuned power amplifier at any Q and switch duty cycle. IEEE Transactions on Circuits and Systems, 34, 149–159.

    Article  Google Scholar 

  18. Mediano, A., Gaudo, P. M., & Bernal, C. K. (2007). Design of class-E amplifier with nonlinear and linear shunt capacitances for any duty cycle. IEEE Transactions on Microwave Theory and Techniques, 55, 484–492.

    Article  Google Scholar 

  19. Hayati, M., Lotfi, A., Kazimierczuk, M. K., & Sekiya, H. (2013). Analysis and design of class-E power amplifier with MOSFET parasitic linear and nonlinear capacitances at any duty ratio. IEEE Transactions on Power Electronics, 28, 5222–5232.

    Article  Google Scholar 

  20. Suetsugu, T., & Kazimierczuk, M. K. (2003). Comparison of class-E amplifier with nonlinear and linear shunt capacitance. IEEE Transactions on Circuits and Systems I: Circuits and Systems I: Fundamental Theory and Applications, 50, 1089–1097.

    Article  Google Scholar 

  21. Suetsugu, T., & Kazimierczuk, M. K. (2004). Analysis and design of class-E amplifier with shunt capacitance composed of nonlinear and linear capacitances. IEEE Transactions on Circuits and Systems I: Regular Papers, 51, 1261–1268.

    Article  Google Scholar 

  22. Wei, X., Sekiya, H., Kuroiwa, S., Suetsugu, T., & Kazimierczuk, M. K. (2011). Design of class-E amplifier with MOSFET linear gate-to-drain and nonlinear drain-to-source capacitances. IEEE Transactions on Circuits and Systems I: Regular Papers, 58, 2556–2565.

    Article  MathSciNet  Google Scholar 

  23. Beltran, R., Raab, F. H., & Velazquez, A. (2009). High-efficiency out phasing transmitter using class-E power amplifiers and asymmetric combining. Microwave and Optical Technology Letters, 51, 2959–2963.

    Article  Google Scholar 

  24. Qin, Y., Gao, S., Sambell, A., & Korolkiewicz, E. (2005). Design of low-cost broadband class-E power amplifier using low-voltage supply. Microwave and Optical Technology Letters, 44, 103–106.

    Article  Google Scholar 

  25. Van, J.-H., Kim, M.-S., Jung, S.-C., Park, H.-C., Ahn, G., Park, C.-S., et al. (2007). A high-frequency and high-power quasi-class-E amplifier design using a finite bias feed inductor. Microwave and Optical Technology Letters, 49, 1114–1118.

    Article  Google Scholar 

  26. Hayati, M., & Lotfi, A. (2010). Compact lowpass filter with wide stopband using open stubs loaded tapered compact microstrip resonator cell. IEICE Electronics Express, 7, 1252–1258.

    Article  Google Scholar 

  27. Zhang, H., Ma, X., Wong, S. C., & Tse, C. K. (2007). Analysis and design of class-E power amplifier with nonlinear parasitic capacitance at any duty ratio. Microwave and Optical Technology Letters, 49, 920–923.

    Article  Google Scholar 

  28. Hayati, M., & Lotfi, A. (2013). Design of broadband and high efficiency class-E amplifier with pHEMT using a novel low pass microstrip resonator cell. Microwave and Optical Technology Letters, 55, 1118–1124.

    Article  Google Scholar 

  29. Wang, L., Chen, W., Wang, P., Xue, X., Dong, J., & Feng, Z. (2010). Design of asymmetrical spur-line filter for a high power sic MESFET class-E power amplifier. Microwave and Optical Technology Letters, 52, 1650–1652.

    Article  Google Scholar 

  30. Khezeli, M. R., Hayati, M., & Lotfi, A. (2014). Compact wide stopband low-pass filter using spiral loaded tapered compact microstrip resonator cell. International Journal of Electronics, 101, 375–382.

    Article  Google Scholar 

  31. Lee, Y. S., & Jeong, Y. H. (2007). A high-efficiency class-E power amplifier using SiC MESFET. Microwave and Optical Technology Letters, 49, 1447–1449.

    Article  Google Scholar 

  32. Adinehvand, A., & Lotfi, A. (2013). Compact lowpass filter with wide stopband using open stubs-loaded spiral microstrip resonant cell. Journal of Applied Computational Electromagnetics Society (ACES), 28, 27–34.

    Google Scholar 

  33. Lee, Y.-S., Lee, M.-W., & Jeong, Y.-H. (2008). A 1-GHz GaN HEMT based class-E power amplifier with 80% efficiency. Microwave and Optical Technology Letters, 50, 2989–2992.

    Article  Google Scholar 

  34. International Rectifier, [Online]. Available: http://www.irf.com/productinfo/models/. Accessed 3 June 2014.

Download references

Acknowledgments

The authors would like to thank Iran’s National Elites Foundation. This work was supported in part by a grant from Iran’s National Elites Foundation for the Post Doctoral Fellowship with Sharif University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Lotfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, A., Medi, A. Design, analysis and implementation of class-E ZCS/ZCDS power amplifier for any duty ratio with nonlinear output parasitic capacitance. Analog Integr Circ Sig Process 89, 185–195 (2016). https://doi.org/10.1007/s10470-016-0812-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0812-3

Keywords

Navigation