Skip to main content
Log in

A low-power, reconfigurable, pipelined ADC for implantable bioimpedance measurement system with vertically aligned carbon nanofibers (VACNF) electrodes

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Implantable bioimpedance monitoring has the potential to be an extremely powerful tool for biomedical research and healthcare. Currently, signal processing, specifically analog-to-digital conversion, does not allow for power-efficient conversion of bioimpedance data over a wide spectrum of frequency. In this paper, a reconfigurable pipelined analog-to-digital converter, for bioimpedance monitoring applications is presented. The converter can operate with a sampling rate between 100 kS/s to 20 MS/s and a resolution of 8 or 10 bits depending on the signal amplitude. Furthermore, the converter is self-configurable in terms of sampling rate and resolution based on the frequency and the amplitude of the input signal. A competitive FOM range (51.7–157 fJ/conv) is achieved by taking advantage of weak-inversion-biased transistors and utilizing an interference elimination technique in the 3rd pipeline stage to increase the power efficiency. The system is realized in a standard 130 nm CMOS process and consumes 16.1 μW and 1.06 mW in 8-bit and 10-bit mode, respectively. The core area of design is only 0.426 mm2. Test results show that the proposed ADC can successfully digitize the voltage drop across a bovine cell impedance model that is derived for an implantable bioimpedance measurement sensor application using the multi-electrode array of vertically aligned carbon nanofibers (VACNF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rodriguez-Perez, A., Delgado-Restituto, M., Medeiro, F., & Rodriguez-Vazquez, A. (2009). A low-power reconfigurable ADC for biomedical sensor interfaces, Biomedical Circuits and Systems Conference, BioCAS 2009 IEEE (pp. 253–256).

  2. Yip, M., & Chandrakasan, A. P. (2011). A resolution-reconfigurable 5-to-10b 0.4-to-1 V power scalable SAR ADC, IEEE International Solid State Circuits Conference Digest of Technical Papers (pp. 190–192).

  3. O’Driscoll, S., & Meng, T. H. (2009). Adaptive resolution ADC array for neural implant, Annual International Conference of Engineering in Medicine and Biology Society, 2009. EMBC 2009 (pp.1053–1056).

  4. Abdelhalim, K., MacEachern, L., & Mahmoud, S. (2007). A nanowatt successive approximation ADC with a calibrated capacitor array for biomedical applications, 50th Midwest Symposium on Circuits and Systems, 2007. MWSCAS 2007 (pp.136–139).

  5. Yuan, C., & Lam, Y. Y. H. (2013). A 281-nW 43.3 fJ/conversion-step 8-ENOB 25-kS/s asynchronous SAR ADC in 65 nm CMOS for biomedical applications, IEEE International Symposium on Circuits and Systems (ISCAS), 2013 (pp.622–625).

  6. Huang, G. Y., Chang, S. J., Liu, C. C., & Lin, Y. Z. (2012). A 1-µW 10-bit 200-kS/s SAR ADC With a bypass window for biomedical applications, IEEE Journal of Solid-State Circuits (vol. 47, no. 11, pp. 2783–2795).

  7. Qiao, G., Wang, W., Duan, W., Zheng, F., Sinclair,A. J., & Chatwin, C. R. (2012). Bioimpedance analysis for the characterization of breast cancer cells in suspension, IEEE Transactions on Biomedical Engineering (vol.59, pp. 2321–2329).

  8. Cheng, K., Ko, Y., & Wang, T. (2012). The Application of bioimpedance method for foot sole blood perfusion characterization, Sixth International Conference on Genetic and Evolutionary Computing (ICGEC), 2012 (pp. 211–213).

  9. Lumbroso, R., Naas, N., Beitel, L. K., Lawrence, M. F., & Trifiro, M. A. (2007). Novel bioimpedance sensor for glucose recognition, International Symposium on Signals, Systems and Electronics, 2007. ISSSE ‘07 (pp. 41–43).

  10. Schwan, H. (1957). Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics, 5, 147–209.

    Article  Google Scholar 

  11. Bogonez-Franco, P., Bragos, R., Bayes-Genis, A., & Rosell-Ferrer, J. (2009). Implantable bioimpedance monitor using ZigBee, Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE (pp. 4868–4871).

  12. Ivorra, A. (2002). Bioimpedance monitoring for physicians: an overview. Barcelona: Biomedical Applications Group, CNM.

    Google Scholar 

  13. Holder, D. (2004). Appendix A. Brief introduction to bioimpedance. In S. D. Holder (Ed.), Electrical impedance tomography methods, history and applications (pp. 411–422). Bristol: Taylor and Francis.

    Chapter  Google Scholar 

  14. Harpe, P., Zhang, Y., Dolmans, G., Philips, K., & de Groot, H. (2012). A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step, IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 (pp. 472–474).

  15. Murmann, B. ADC Performance Survey 1997–2014 [Online]. http://www.stanford.edu/~murmann/adcsurvey.html.

  16. Lionheart, W. R., Kaipio, J., & McLeod, C. N. (2001). Generalized optimal current patterns and electrical safety in EIT. Physiological Measurement, 22, 85–90.

    Article  Google Scholar 

  17. Randall, T., Mahbub, I., & Islam, S. K., A low power auto-reconfigurable pipelined ADC for implantable biomedical applications, SENSORS, 2013 IEEE (vol., no., pp.1–4.

  18. Ahmed, I. & Johns, D. A. (2005). A 50-MS/s (35 mW) to 1-kS/s (15 μW) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation, IEEE Journal of Solid-State Circuits (vol. 40, pp. 2446–2455).

  19. Djemouai, A., Sawan, M., & Slamani, M. (1998). High performance integrated CMOS frequency-to-voltage converter, In Proceedings of 10th International Conference on Microelectronics IEEE (pp.63–66).

  20. Alegre, J. P., Celma, S., Sanz, M. T., & Martinez, P. (2006). A low-ripple fast-settling CMOS envelope detector, Research in Microelectronics and Electronics 2006 (pp. 6–12).

  21. Waldmann, O., Persaud, A., Kapadia, R., Takei, K., Allen, F. I., Javey, A., et al. (2013). Effects of palladium coating on field-emission properties of carbon nanofibers in a hydrogen plasma. Thin Solid Films, 534, 488–491.

    Article  Google Scholar 

  22. Anderson, M., Norling, K., Dreyfert, A., & Yuan, J. (2005) A reconfigurable pipelined ADC in 0.18 μm CMOS, Symposium on VLSI Circuits, 2005. Digest of Technical Papers ( pp.326–329).

  23. Huang, M., & Liu, S. (2010). A 10-MS/s-to-100-kS/s power-scalable fully differential CBSC 10-bit pipelined ADC with adaptive biasing, IEEE Transactions on Circuits and Systems II: Express Briefs (vol. 57, pp.11–15).

  24. Taherzadeh-Sani, M., & Hamoui, A. A. (2013). A reconfigurable and power-scalable 10–12 bit 0.4–44 MS/s pipelined ADC with 0.35–0.5 pJ/step in 1.2 V 90 nm digital CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers (vol. 60, no. 1, pp. 74–83).

  25. Yu, Y., Mamun, K. A. A., Islam, S. K., & McFarlane, N. (2015). Cell impedance sensing system based on vertically aligned carbon nanofibers, IEEE Nanotechnology Materials and Devices Conference (pp. 1–2).

Download references

Acknowledgments

Fabrication of the multi electrode arrays of vertically aligned carbon nanofibers (VACNF) was conducted at the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ifana Mahbub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randall, T.C., Islam, S.K., Mahbub, I. et al. A low-power, reconfigurable, pipelined ADC for implantable bioimpedance measurement system with vertically aligned carbon nanofibers (VACNF) electrodes. Analog Integr Circ Sig Process 89, 139–149 (2016). https://doi.org/10.1007/s10470-016-0805-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0805-2

Keywords

Navigation