Classification for synthesis of high spectral purity current-steering mixing-DAC architectures

Abstract

This paper proposes a classification of Mixing-DAC architectures, focusing on spectral purity. Based on literature research, analysis and simulations, the proposed classification shows the impact of architectural choices on the output spectral purity. To concretize the classification and validate the analysis, a number of specific Mixing-DAC architectures are synthesized, discussed and simulated. Given the proposed classification, a set of optimal architectural choices lead to a strong architecture candidate for achieving high spectral purity at high signal frequencies, i.e. SFDR > 80 dBc at fOUT = 4 GHz for current and future multicarrier GSM applications. The main characteristics of this architecture are: Cartesian signaling, local Gilbert-cell mixing and a fully differential implementation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Balasubramanian, S., et al. (2012). Ultimate transmission. IEEE Microwave Magazine, 13(1), 64–82.

    Article  Google Scholar 

  2. 2.

    Luschas, S., et al. (2003). A 942 MHz output, 17.5 MHz bandwidth, −70 dBc IMD3 ΣΔ DAC. In Proceedings of the CICC.

  3. 3.

    Eloranta, P., et al. (2007). A multimode transmitter in 0.13 µm CMOS using direct-digital RF modulator. In Proceedings of the JSSC.

  4. 4.

    Taleie, S., et al. (2008). A linear ΣΔ digital IF to RF DAC transmitter with embedded mixer. Microwave Theory and Techniques.

  5. 5.

    Taleie, S., et al. (2008) A 0.18 µm CMOS fully integrated RFDAC and VGA for WCDMA transmitters. In Proceedings of the RFIC.

  6. 6.

    Choe, M.-J., et al. (2005). A 1.6-GS/s 12-bit return-to-zero GaAs RF DAC for multiple nyquist operation. In Proceedings of the JSSC.

  7. 7.

    Jerng, A. & C. Sodini (2006). A wideband ΔΣ digital-rf modulator with self-tuned RF bandpass reconstruction filter. In Proceedings of the CICC.

  8. 8.

    Jerng, A., & Sodini, C. (2007). A wideband ΔΣ digital-RF modulator for high data rate transmitters. In Proceedings of the JSSC.

  9. 9.

    Zimmermann, N., et al. (2009). Design of an RF-DAC in 65 nm CMOS for multistandard, multimode transmitters. In Proceedings of the RFIT.

  10. 10.

    Choe, M.-J., et al. (2011). DC - 10 GHz RF digital to analog converter. In Proceedings of the CSICS.

  11. 11.

    Balasubramanian, S., & Khalil, W. (2013). Architectural tren ds in current-steering digital-to-analog converters. Springer Analog Integrated Circuits and Signal Processing.

  12. 12.

    Kahn, L. (1952). Single-sideband transmission by envelope el imination and restoration. In Proceedings of the IRE.

  13. 13.

    Reynaert, P., & Steyaert, M. (2005). A 1.75-GHz polar modulate d CMOS RF power amplifier for GSM-EDGE. In Proceedings of the JSSC.

  14. 14.

    Raab, F. H. (1996). Intermodulation distortion in Kahn-technique transmitters. IEEE Transactions on Microwave Theory and Techniques, 44(12), 2273–2278.

    Article  Google Scholar 

  15. 15.

    Valkama, M., et al. (2001). Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Transactions on Signal Processing, 49(10), 2335–2344.

    Article  Google Scholar 

  16. 16.

    Alavi, M., et al. (2008). A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1129–1133.

    Article  Google Scholar 

  17. 17.

    Groeneveld, W., et al. (1989). A self calibration technique for monolithic high-resolution D/A converters. In Proceedings of the ISSCC.

  18. 18.

    Radulov, G., et al. (2005). A start-up calibration method for generic current-steering D/A converters with optimal area solution. In Proceedings of the ISCAS.

  19. 19.

    Bechthum, E., et al. (2011). A novel temperature and disturbance insensitive DAC calibration method. In Proceedings of the ISCAS.

  20. 20.

    Tang, Y., et al. (2010). A 14 b 200 MS/s DAC with SFDR > 78 dBc, IM3 < −83 dBc and NSD < −163 dBm/Hz across the whole Nyquist band enabled by dynamic-mismatch mapping. In Proceedings of the VLSIC.

  21. 21.

    Bechthum, E., et al. (2011). Timing error measurement for highly linear wideband digital to analog converters. In Proceedings of the ISCAS.

  22. 22.

    Balasubramanian, S., & Khalil, W. (2010). Direct digital-to-RF digital-to-analogue converter using image replica and nonlinearity cancelling architecture. Electronics letters, 46(14), 1030–1032.

    Article  Google Scholar 

  23. 23.

    Cruise, P., et al. (2005). A digital-to-RF-amplitude converter for GSM/GPRS/EDGE in 90-nm digital CMOS. In Proceedings of the RFIC.

  24. 24.

    Nakabayashi, T., et al. (2006). Transmitting system using alias harmonic components of output signal of DAC. In 36th European Microwave Conference.

  25. 25.

    Bechthum, E., et al. (2012). Systematic analysis of the impact of mixing locality on Mixing-DAC linearity for multicarrier GSM. In Proceedings of the ISCAS.

  26. 26.

    Bechthum, E., et al. (2014). A novel timing-error based approach for high speed highly linear Mixing-DAC architectures. In Procedings of the ISCAS.

  27. 27.

    Doris, K., et al. (2003). Mismatch-based timing errors in current steering DACs. In Proceedings of the ISCAS.

  28. 28.

    Lin, C.-H., et al. (2009). A 12 bit 2.9 GS/s DAC with IM3 < −60 dBc beyond 1 GHz in 65 nm CMOS. In Proceedings of the JSSC.

  29. 29.

    Bechthum, E., et al. (2015). A 5.3 GHz 16 bit 1.75 GSps wideband RF Mixing-DAC achieving IMD < −82 dBc up to 1.9 GHz. In Proceedings of the ISSCC.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elbert Bechthum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bechthum, E., Radulov, G., Briaire, J. et al. Classification for synthesis of high spectral purity current-steering mixing-DAC architectures. Analog Integr Circ Sig Process 85, 497–504 (2015). https://doi.org/10.1007/s10470-015-0633-9

Download citation

Keywords

  • Mixing-DAC
  • Digital to analog converter
  • Mixer
  • High linearity
  • Classification