Analog Integrated Circuits and Signal Processing

, Volume 85, Issue 3, pp 497–504 | Cite as

Classification for synthesis of high spectral purity current-steering mixing-DAC architectures

  • Elbert BechthumEmail author
  • Georgi Radulov
  • Joost Briaire
  • Govert Geelen
  • Arthur van Roermund
Mixed Signal Letter


This paper proposes a classification of Mixing-DAC architectures, focusing on spectral purity. Based on literature research, analysis and simulations, the proposed classification shows the impact of architectural choices on the output spectral purity. To concretize the classification and validate the analysis, a number of specific Mixing-DAC architectures are synthesized, discussed and simulated. Given the proposed classification, a set of optimal architectural choices lead to a strong architecture candidate for achieving high spectral purity at high signal frequencies, i.e. SFDR > 80 dBc at fOUT = 4 GHz for current and future multicarrier GSM applications. The main characteristics of this architecture are: Cartesian signaling, local Gilbert-cell mixing and a fully differential implementation.


Mixing-DAC Digital to analog converter Mixer High linearity Classification 


  1. 1.
    Balasubramanian, S., et al. (2012). Ultimate transmission. IEEE Microwave Magazine, 13(1), 64–82.CrossRefGoogle Scholar
  2. 2.
    Luschas, S., et al. (2003). A 942 MHz output, 17.5 MHz bandwidth, −70 dBc IMD3 ΣΔ DAC. In Proceedings of the CICC. Google Scholar
  3. 3.
    Eloranta, P., et al. (2007). A multimode transmitter in 0.13 µm CMOS using direct-digital RF modulator. In Proceedings of the JSSC.Google Scholar
  4. 4.
    Taleie, S., et al. (2008). A linear ΣΔ digital IF to RF DAC transmitter with embedded mixer. Microwave Theory and Techniques. Google Scholar
  5. 5.
    Taleie, S., et al. (2008) A 0.18 µm CMOS fully integrated RFDAC and VGA for WCDMA transmitters. In Proceedings of the RFIC.Google Scholar
  6. 6.
    Choe, M.-J., et al. (2005). A 1.6-GS/s 12-bit return-to-zero GaAs RF DAC for multiple nyquist operation. In Proceedings of the JSSC.Google Scholar
  7. 7.
    Jerng, A. & C. Sodini (2006). A wideband ΔΣ digital-rf modulator with self-tuned RF bandpass reconstruction filter. In Proceedings of the CICC.Google Scholar
  8. 8.
    Jerng, A., & Sodini, C. (2007). A wideband ΔΣ digital-RF modulator for high data rate transmitters. In Proceedings of the JSSC.Google Scholar
  9. 9.
    Zimmermann, N., et al. (2009). Design of an RF-DAC in 65 nm CMOS for multistandard, multimode transmitters. In Proceedings of the RFIT.Google Scholar
  10. 10.
    Choe, M.-J., et al. (2011). DC - 10 GHz RF digital to analog converter. In Proceedings of the CSICS.Google Scholar
  11. 11.
    Balasubramanian, S., & Khalil, W. (2013). Architectural tren ds in current-steering digital-to-analog converters. Springer Analog Integrated Circuits and Signal Processing. Google Scholar
  12. 12.
    Kahn, L. (1952). Single-sideband transmission by envelope el imination and restoration. In Proceedings of the IRE.Google Scholar
  13. 13.
    Reynaert, P., & Steyaert, M. (2005). A 1.75-GHz polar modulate d CMOS RF power amplifier for GSM-EDGE. In Proceedings of the JSSC.Google Scholar
  14. 14.
    Raab, F. H. (1996). Intermodulation distortion in Kahn-technique transmitters. IEEE Transactions on Microwave Theory and Techniques, 44(12), 2273–2278.CrossRefGoogle Scholar
  15. 15.
    Valkama, M., et al. (2001). Advanced methods for I/Q imbalance compensation in communication receivers. IEEE Transactions on Signal Processing, 49(10), 2335–2344.CrossRefGoogle Scholar
  16. 16.
    Alavi, M., et al. (2008). A novel architecture of delta-sigma modulator enabling all-digital multiband multistandard RF transmitters design. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1129–1133.CrossRefGoogle Scholar
  17. 17.
    Groeneveld, W., et al. (1989). A self calibration technique for monolithic high-resolution D/A converters. In Proceedings of the ISSCC.Google Scholar
  18. 18.
    Radulov, G., et al. (2005). A start-up calibration method for generic current-steering D/A converters with optimal area solution. In Proceedings of the ISCAS.Google Scholar
  19. 19.
    Bechthum, E., et al. (2011). A novel temperature and disturbance insensitive DAC calibration method. In Proceedings of the ISCAS.Google Scholar
  20. 20.
    Tang, Y., et al. (2010). A 14 b 200 MS/s DAC with SFDR > 78 dBc, IM3 < −83 dBc and NSD < −163 dBm/Hz across the whole Nyquist band enabled by dynamic-mismatch mapping. In Proceedings of the VLSIC.Google Scholar
  21. 21.
    Bechthum, E., et al. (2011). Timing error measurement for highly linear wideband digital to analog converters. In Proceedings of the ISCAS.Google Scholar
  22. 22.
    Balasubramanian, S., & Khalil, W. (2010). Direct digital-to-RF digital-to-analogue converter using image replica and nonlinearity cancelling architecture. Electronics letters, 46(14), 1030–1032.CrossRefGoogle Scholar
  23. 23.
    Cruise, P., et al. (2005). A digital-to-RF-amplitude converter for GSM/GPRS/EDGE in 90-nm digital CMOS. In Proceedings of the RFIC.Google Scholar
  24. 24.
    Nakabayashi, T., et al. (2006). Transmitting system using alias harmonic components of output signal of DAC. In 36th European Microwave Conference.Google Scholar
  25. 25.
    Bechthum, E., et al. (2012). Systematic analysis of the impact of mixing locality on Mixing-DAC linearity for multicarrier GSM. In Proceedings of the ISCAS.Google Scholar
  26. 26.
    Bechthum, E., et al. (2014). A novel timing-error based approach for high speed highly linear Mixing-DAC architectures. In Procedings of the ISCAS.Google Scholar
  27. 27.
    Doris, K., et al. (2003). Mismatch-based timing errors in current steering DACs. In Proceedings of the ISCAS.Google Scholar
  28. 28.
    Lin, C.-H., et al. (2009). A 12 bit 2.9 GS/s DAC with IM3 < −60 dBc beyond 1 GHz in 65 nm CMOS. In Proceedings of the JSSC.Google Scholar
  29. 29.
    Bechthum, E., et al. (2015). A 5.3 GHz 16 bit 1.75 GSps wideband RF Mixing-DAC achieving IMD < −82 dBc up to 1.9 GHz. In Proceedings of the ISSCC.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Elbert Bechthum
    • 1
    Email author
  • Georgi Radulov
    • 1
  • Joost Briaire
    • 2
  • Govert Geelen
    • 2
  • Arthur van Roermund
    • 1
  1. 1.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.AquantiaEindhovenThe Netherlands

Personalised recommendations