Skip to main content
Log in

Fast statistical analysis of nonlinear analog circuits using model order reduction

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The reduction of the computational cost of statistical circuit analysis, such as Monte Carlo (MC) simulation, is a challenging problem. In this paper, we propose to build macromodels capable of reproducing the statistical behavior of all repeated MC simulations in a single simulation run. The parameter space is sampled similarly to the MC method and the resulting nonlinear models are reduced simultaneously to a small macromodel using nonlinear model order reduction method based on projection, perturbation theory and linearization techniques. We demonstrate the effectiveness of the proposed method for three applications: a current mirror, an operational transconductance amplifier, and a three inverter chain under the effect of current factor and threshold voltage variations. Our experimental results show that our method provides a speedup in the range 100–500 over 1000 samples of MC simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kinget, P. R. (2005). Device mismatch and tradeoffs in the design of analog circuits. IEEE Journal of Solid-State Circuits, 40(6), 1212–1224. doi:10.1109/JSSC.2005.848021.

    Article  Google Scholar 

  2. Zhigang, H., Tan, S. X. D., Shen, R., & Shi, G. (2011). Performance bound analysis of analog circuits considering process variations. In ACM/IEEE design automation conference (pp. 310–315). doi:10.1145/2024724.2024799.

  3. Kuo, P. Y., Saibua, S., Huang, G., & Zhou, D. (2012). An efficient method for evaluating analog circuit performance bounds under process variations. IEEE Transactions on Circuits and Systems II, 59(6), 351–355. doi:10.1109/TCSII.2012.2190872.

    Article  Google Scholar 

  4. Lahiouel, O., Aridhi, H., Zaki, M. H., & Tahar, S. (2014). Enabling the DC solutions characterization using a fuzzy approach. IEEE international conference on new circuits and systems (pp. 161–164). doi:10.1109/NEWCAS.2014.6934008.

  5. Jacoboni, C., & Lugli, P. (1989). The Monte Carlo method for semiconductor device simulation. Vienna: Springer. doi:10.1007/978-3-7091-6963-6.

    Book  Google Scholar 

  6. Bayrakci, A. A., Demir, A., & Tasiran, S. (2010). Fast Monte Carlo estimation of timing yield with importance sampling and transistor-level circuit simulation. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 29(9), 1328–1341. doi:10.1109/TCAD.2010.2049042.

    Article  Google Scholar 

  7. Keramat, M., & Kielbasa, R. (1997). Latin hypercube sampling Monte Carlo estimation of average quality index for integrated circuits. In J. J. Becerra & E. G. Friedman (Eds.), Analog design issues in digital VLSI circuits and systems (pp. 131–142). New York: Springer. doi:10.1007/978-1-4615-6101-9_11.

    Chapter  Google Scholar 

  8. Keramat, M., & Kielbasa, R. (1999). Modified latin hypercube sampling Monte Carlo estimation for average quality index. Analog Integrated Circuits and Signal Processing, 19(1), 87–98. doi:10.1023/A:1008386501079.

    Article  Google Scholar 

  9. Singhee, A., & Rutenbar, R. A. (2010). Why quasi-Monte Carlo is better than Monte Carlo or latin hypercube sampling for statistical circuit analysis. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 29(11), 1763–1776. doi:10.1109/TCAD.2010.2062750.

    Article  Google Scholar 

  10. Wang, J., Ghanta, P., & Vrudhula, S. (2004). Stochastic analysis of interconnect performance in the presence of process variations. In ACM/IEEE international conference on computer aided design (pp. 880–886). doi:10.1109/ICCAD.2004.1382698.

  11. Strunz, K., & Su, Q. (2008). Stochastic formulation of SPICE-type electronic circuit simulation with polynomial chaos. ACM Transactions on Modeling and Computer Simulation, 18(4), 1–23. doi:10.1145/1391978.1391981.

    Article  Google Scholar 

  12. Yu, H., Liu, X., Wang, H., & Tan, S. X. (2010). A fast analog mismatch analysis by an incremental and stochastic trajectory piecewise linear macromodel. In IEEE Asia and South Pacific design automation conference (pp. 211–216). doi:10.1109/ASPDAC.2010.5419894.

  13. Antoulas, A. C. (2005). Approximation of large-scale dynamical systems. Advances in design and control. Philadelphia: Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718713.

    Book  Google Scholar 

  14. Hinze, M., Kunkel, M., & Vierling, M. (2011). POD model order reduction of drift diffusion equations in electrical networks. In Model reduction for circuit simulation, Lecture Notes in Electrical Engineering (Vol. 74, pp. 177–192). New York: Springer. doi:10.1007/978-94-007-0089-5_10.

  15. Mi, N., Tan, S. X., Liu, P., Cui, J., Cai, J., & Hong, X. (2007). Stochastic extended Krylov subspace method for variational analysis of on-chip power grid networks. In ACM/IEEE international conference on computer aided design (pp. 48–53). doi:10.1109/ICCAD.2007.4397242.

  16. El-Moselhy, T., & Daniel, L. (2010). Variation aware interconnect extraction using statistical moment preserving model order reduction. In ACM/IEEE design, automation and test in Europe (pp. 453–458). doi:10.1109/DATE.2010.5457161.

  17. Aridhi, H., Zaki, M. H., & Tahar, S. (2012). Towards improving simulation of analog circuits using model order reduction. In ACM/IEEE design, automation and test in Europe (pp. 1337–1342). doi:10.1109/DATE.2012.6176699.

  18. Rewienski, M., & White, J. (2006). A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 22(2), 155–170. doi:10.1109/TCAD.2002.806601.

    Article  MathSciNet  Google Scholar 

  19. Dong, N., & Roychowdhury, J. (2008). General-purpose nonlinear model-order reduction using piecewise-polynomial representations. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 27(2), 649–654. doi:10.1109/TCAD.2007.907272.

    Google Scholar 

  20. Zhang, Z., El-Moselhy, T. A., Elfadel, I. M., & Daniel, L. (2013). Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 32(10), 1533–1545. doi:10.1109/TCAD.2013.2263039.

    Article  Google Scholar 

  21. Zhang, Z., Elfadel, I. M., & Daniel, L. (2013b). Uncertainty quantification for integrated circuits: Stochastic spectral methods. In ACM/IEEE international conference on computer aided design (pp. 803–810). doi:10.1109/ICCAD.2013.6691205.

  22. Zhang, Z., Yang, X., Oseledets, I. V., Karniadakis, G. E., & Daniel, L. (2015). Enabling high-dimensional hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 34(1), 63–76. doi:10.1109/TCAD.2014.2369505.

    Article  Google Scholar 

  23. Zhang, Z., Yang, X., Marucci, G., Maffezzoni, P., Elfadel, I. M., Karniadakis, G., & Daniel, L. (2014). Stochastic testing simulator for integrated circuits and MEMS: Hierarchical and sparse techniques. In IEEE custom integrated circuits conference (pp. 1–8). doi:10.1109/CICC.2014.6946009.

  24. Ma, X., & Zabaras, N. (2010). An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. Elsevier Journal of Computational Physics, 229(10), 3884–3915. doi:10.1016/j.jcp.2010.01.033.

    Article  MATH  MathSciNet  Google Scholar 

  25. Oseledets, I. V. (2011). Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5), 2295–2317. doi:10.1137/090752286.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kim, J., Jones, K. D., & Horowitz, M. A. (2010). Fast, non-Monte-Carlo estimation of transient performance variation due to device mismatch. IEEE Transactions on Circuits and Systems I, 57(7), 1746–1755. doi:10.1109/TCSI.2009.2035418.

    Article  MathSciNet  Google Scholar 

  27. Oehm, J., & Schumacher, K. (1993). Quality assurance and upgrade of analog characteristics by fast mismatch analysis option in network analysis environment. IEEE Journal of Solid-State Circuits, 28(7), 865–871. doi:10.1109/4.222191.

    Article  Google Scholar 

  28. Cadence Design Systems. (2004). Virtuoso spectre circuit simulator reference product version 5.1.41.

  29. Ma, J. D., & Rutenbar, R. A. (2007). Interval-valued reduced-order statistical interconnect modeling. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 26(9), 1602–1613. doi:10.1109/ICCAD.2004.1382621.

    Article  Google Scholar 

  30. Pillage, L. T., & Rohrer, R. A. (1990). Asymptotic waveform evaluation for timing analysis. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 9(4), 352–366. doi:10.1109/43.45867.

    Article  Google Scholar 

  31. Odabasioglu, A., Celik, M., & Pileggi, L. T. (1998). PRIMA: Passive reduced-order interconnect macromodeling algorithm. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 17(8), 645–654. doi:10.1109/43.712097.

    Article  Google Scholar 

  32. Song, Y., Sai, M. P. D., & Yu, H. (2014). Zonotope-based nonlinear model order reduction for fast performance bound analysis of analog circuits with multiple-interval-valued parameter variations. In ACM/IEEE design, automation and test in Europe (pp. 1–6). doi:10.7873/DATE.2014.024.

  33. Eppstein, D. (1995). Zonohedra and zonotopes. Technical report 95–53, University of California, Irvine, CA. Accessed December, 1995 from http://www.ics.uci.edu/eppstein/pubs/Epp-TR-95-53.

  34. Gu, C. (2012). Model order reduction of nonlinear dynamical systems. Ph.D. thesis, University of California, Berkeley, CA.

  35. Lahiouel, O., Aridhi, H., Zaki, M. H., & Tahar, S. (2011). A tool for modeling and analysis of electronic circuits and systems. Technical Report, Concordia University, Montreal, QC, Canada. Accessed October, 2011 from http://www.hvg.ece.concordia.ca/Publications/TECH_REP/TMAAC_TR12/.

  36. Buhler, M., Koehl, J., Bickford, J., Hibbeler, J., Schlichtmann, U., Sommer, R., Pronath, M., & Ripp, A. (2006). DFM/DFY design for manufacturability and yield: Influence of process variations in digital, analog and mixed-signal circuit design. In ACM/IEEE design, automation and test in Europe (pp. 1–6). doi:10.1109/DATE.2006.243763.

  37. Pelgrom, M. J. M., Duinmaijer, A. C. J., & Welbers, A. P. G. (1989). Matching properties of MOS transistors. IEEE Journal of Solid-State Circuits, 24(5), 1433–1439. doi:10.1109/JSSC.1989.572629.

    Article  Google Scholar 

  38. Mcandrew, C. C., Bates, J., Ida, R. T., & Drennan, P. (1997). Efficient statistical BJT modeling, why \(\beta\) is more than \(\frac{I_c}{I_b}\). In IEEE bipolar/BiCMOS circuits and technology meeting (pp. 28–31). doi: 10.1109/BIPOL.1997.647349.

  39. Gerstnern, T., & Griebel, M. (1998). Numerical integration using sparse grids. Numerical Algorithms, 18(3—-4), 209–232. doi:10.1023/A:1019129717644.

    Article  MathSciNet  Google Scholar 

  40. Gu, C. (2011). QLMOR: A projection-based nonlinear model order reduction approach using quadratic-linear representation of nonlinear systems. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 30(9), 1307–1320. doi:10.1109/TCAD.2011.2142184.

    Article  Google Scholar 

  41. Dejonghe, D., Deschrijver, D., Dhaene, T., & Gielen, G. (2013). Extracting analytical nonlinear models from analog circuits by recursive vector fitting of transfer function trajectories. In ACM/IEEE design, automation and test in Europe (pp. 1448–1453). doi:10.7873/DATE.2013.295.

  42. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108. doi:10.2307/2346830.

    MATH  Google Scholar 

  43. MATLAB. (2014). Documentation center. http://www.mathworks.com/.

  44. Yeh, T. H., Lin, J. C. H., Wong, S. C., Huang, H., & Sun, J. Y. C. (2001). Mismatch characterization of \(1.8v\) and \(3.3v\) devices in \(0.18\mu\)m mixed signal CMOS technology. In IEEE international conference on microelectronic test structures (pp. 77–82). doi:10.1109/ICMTS.2001.928641.

  45. Baker, R. J. (2010). CMOS circuit design, layout, and simulation. Hoboken: Wiley-IEEE Press. doi:10.1002/9780470891179.

    Book  Google Scholar 

  46. Doedel, E. J. (2007). Numerical continuation methods for dynamical systems (pp. 1–49), Lecture notes on numerical analysis of nonlinear equations. Dordrecht: Springer. doi:10.1007/978-1-4020-6356-5_1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henda Aridhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aridhi, H., Zaki, M.H. & Tahar, S. Fast statistical analysis of nonlinear analog circuits using model order reduction. Analog Integr Circ Sig Process 85, 379–394 (2015). https://doi.org/10.1007/s10470-015-0588-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0588-x

Keywords

Navigation