Skip to main content

Voltage differencing transconductance amplifier based resistorless and electronically tunable wave active filter

Abstract

This paper presents a systematic approach for the realization of resistorless wave active filter using voltage differencing transconductance amplifier. The proposed filter uses grounded capacitor and also possesses electronic tunability of cut-off frequency via bias current. The functionality of the proposed filter is verified for a 4th order low pass filter through PSPICE simulation using 0.18 µm TSMC CMOS technology parameter. Experimental results using commercially available IC LM13700/NS are also included which corroborate the theoretical and simulated results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Van Valkenburg, M. E., & Shaumann, R. (2001). Design of analog filters. Oxford (UK): Oxford University Press.

    Google Scholar 

  2. 2.

    Prasad, D., & Bhaskar, D. R. (2012). Grounded and floating inductance simulation circuits using VDTAs. Circuits and Systems, 3(4), 342–347.

    Article  Google Scholar 

  3. 3.

    Tangsrirat, W., & Unhavanich, S. (2014). Voltage differencing transconductance amplifier-based floating simulators with a single grounded capacitor. Indian Journal of Pure and Applied Physics, 52(6), 423–428.

    Google Scholar 

  4. 4.

    Li, Y. (2012). A series of new circuits based on CFTAs. AEU - International Journal of Electronics and Communications, 66(7), 587–592.

    Article  Google Scholar 

  5. 5.

    Ayten, U. E., Sagbas, M., Herencsar, N., Koton, J. (2012). Novel floating general element simulators using CBTA.Radioengineering, 21(1), 11-19.

  6. 6.

    Wupper, H., & Meerkotter, K. (1975). New active filter synthesis based on scattering parameters. IIEEE Transcation on Circuit and System, 22(7), 594–602.

    Article  Google Scholar 

  7. 7.

    Haritantis, I., Constantinides, A., & Deliyannis, T. (1976). Wave active filter. IEEE Proceeding, 123(7), 676–682.

    Google Scholar 

  8. 8.

    Tingleff, J., & Toumazou, C. (1975). A 5th order lowpass currentmode wave active filter in CMOS technology. Analog IntegratedCircuits and Signal Processing, 7, 131–137.

    Article  Google Scholar 

  9. 9.

    Georgia, K., & Costas, P. (2010). Modular filter structures using CFOA. Radio engineering, 19(4), 662–666.

    Google Scholar 

  10. 10.

    Pandey, N., & Kumar, P. (2011). Differential voltage current conveyor transconductance amplifier based wave active filter. Journal of Electron Devices, 10, 429–432.

    Google Scholar 

  11. 11.

    Pandey, N., & Kumar, P. (2011). Realization of resistorless wave active filter using differential voltage current controlled conveyor transconductance amplifier. Radioengineering, 20(4), 911–916.

    Google Scholar 

  12. 12.

    Pandey, N., Kumar, P., & Choudhary, J. (2011). Current controlled differential difference current conveyor transconductance amplifier and its application as wave active filter. ISRN Electronics,. doi:10.1155/2013/968749.

    Google Scholar 

  13. 13.

    Bothra, M., Pandey, R., Pandey, N., & Paul, S. K. (2013). Operational trans-resistance amplifier based tunable wave active filter. Radioengineering, 22(1), 159–166.

    Google Scholar 

  14. 14.

    Singh, H., Arora, K., & Prasad, D. (2014). VDTA—based wave active filter. Circuit and System,. doi:10.4236/cs.2014.55014.

    Google Scholar 

  15. 15.

    Biolek, D. (2003). CDTA—Building block for current-mode analog signal processing. In: Proceedings of ECCTD03, Krakow (Poland), 397–400.

  16. 16.

    Yesil, A., Kacar, F., & Kuntman, H. (2011). New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering, 20(3), 632–637.

    Google Scholar 

  17. 17.

    Satansup, J., Pukkalanun, T., & Tangsrirat, W. (2013). Electronically tunable current mode universal filter using VDTAs and grounded capacitors. In: Proceedings of IMECS, Hong kong, (pp. 647–650).

    Google Scholar 

  18. 18.

    Prasad, D., Srivastava, M., & Bhaskar, D. R. (2013). Electronically controllable fully-uncoupled explicit current-mode quadrature oscillator using VDTAs and grounded capacitors. Circuits and Systems, 4(2), 169–172.

    Article  Google Scholar 

  19. 19.

    Prasad, D., & Bhaskar, D. R. (2012). Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. ISRN Electronics,. doi:10.5402/2012/382560.

    Google Scholar 

  20. 20.

    Sotner, R., Jerabek, J., Herencsar, N., Petrzela, J., Vrba, K., & Kincl, Z. (2014). Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integrated Circuits and Signal Processing, 81(1), 121–136.

    Article  Google Scholar 

  21. 21.

    Satansup, J., & Tangsrirat, W. (2014). Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectronics Journal, 45(6), 613–618.

    Article  Google Scholar 

  22. 22.

    Prasad, D., Bhaskar, D. R., & Srivastava, M. (2013). Universal voltage-mode biquad filter using voltage differencing transconductance amplifier. Indian Journal of Pure and Applied Physics, 51(12), 864–868.

    Google Scholar 

  23. 23.

    Yesil, A., & Kacar, F. (2013). Electronically tunable resistorless mixed mode biquad filters. Radioengineering, 22(4), 1016–1025.

    Google Scholar 

  24. 24.

    Herencsar, N., Sotner, R., Koton, J., Misurec, J., & Vrba, K. (2013). New compact VM four-phase oscillator employing only single z-copy VDTA and all grounded passive elements. Elektronika ir Elektrotechnika, 19(10), 87–90.

    Article  Google Scholar 

  25. 25.

    Mekhum, W., & Jaikla, W. (2013). Three input single output voltage-mode multifunction filter with independent control of pole frequency and quality factor. Advances in Electrical and Electronic Engineering, 11(6), 494–500.

    Google Scholar 

  26. 26.

    Uygur, A., & Kuntman, H. (2013). DTMOS-based 0.4V ultra low-voltage low-power VDTA design and its application to EEG data processing. Radioengineering, 22(2), 458–466.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neeta Pandey.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, N., Kumar, P. & Paul, S.K. Voltage differencing transconductance amplifier based resistorless and electronically tunable wave active filter. Analog Integr Circ Sig Process 84, 107–117 (2015). https://doi.org/10.1007/s10470-015-0546-7

Download citation

Keywords

  • Voltage differencing transconductance amplifier
  • Wave active filter
  • Resistorless filter