Skip to main content

Advertisement

Log in

A low power, highly stabilized three electrode potentiostat for biomedical implantable systems

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low-power three-electrode potentiostat for biomedical implantable glucose sensor applications. Low power consumption is one of the most important criteria for a wireless implantable biomedical sensor. Therefore the proposed potentiostat is designed to minimize power consumption of the sensor while maximizing the stability of the system by achieving high phase margin. The transistors in the operational transconductance amplifier (OTA) block of the potentiostat are designed to operate in weak inversion region to meet the low-power design objective. Analysis and calculation of the position of the poles and zeros of the potentiostat are also presented in the paper to validate the stability of the system. The proposed potentiostat was implemented in a standard 0.5 μm CMOS process. The measurement results show that the power consumption of the potentiostat is in the range of 4–10 μW over the physiological glucose concentration range (2–22 mM/L), which produces a sensor current in the range of 0.2–2 μA. These results indicate that the particular topology of the OTA presented in the paper is highly suitable for low power implantable biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Croce, R. A., Vaddiraju, S. S., Kondo, J., Wang, Y., Zuo, L., Zhu, K., et al. (2013). A miniaturized transcutaneous system for continuous glucose monitoring. A Biomedical Microdevices, 15(1), 151–160.

    Article  Google Scholar 

  2. Reay, R. J., Kounaves, S. P., and Kovacs, G. T. A. (1994). An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. Presented at the IEEE international solid state circuits conference (ISSCC), San Francisco, CA, USA, February 16–18, 1994.

  3. Ahmadi, M. M., & Jullien, G. A. (2009). Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Transaction on Circuits and Systems, 56, 10.

    MathSciNet  Google Scholar 

  4. Busoni, L., Carla, M., & Lanzi, L. (2002). A comparison between potentiostatic circuits with grounded work or auxiliary electrode. Review of Scientific Instuments, 73, 1921–1923.

    Article  Google Scholar 

  5. Gore, A., Chakrabartty, S., Pal, S., & Alocilja, E. C. (2006). A multichannel femtoampere-sensitivity potentiostat array for biosensing applications. IEEE Transaction on Circuits and Systems, 53, 2357–2363.

    Article  Google Scholar 

  6. Stanacevic, M., Murari, K., Rege, A., Cauwenberghs, G., & Thakor, N. V. (2007). VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Transaction on Biomedical Circuits and Systems, 1, 63–72.

    Article  Google Scholar 

  7. Roham, M., Halpern, J. M., Martin, H. B., Chiel, H. J., & Mohseni, P. (2008). Wireless amperometric neurochemical monitoring using an integrated telemetry circuit. IEEE Transaction on Biomedical Engineering, 55, 2628–2634.

    Article  Google Scholar 

  8. Roknsharifi, M., Islam, S. K., & Zhu, K. (2012). Wide-range, high-accuracy signal-processing unit for implantable potentiostats. Electronics Letters, 48, 1098–1100.

    Article  Google Scholar 

  9. Schienle, M., Frey, A., Hofmann, F., Holzapfl, B., Paulus, C., Schindler-Bauer, P., and Thewes, R. (2004). A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion. Presented at the IEEE international solid-state circuit conference (ISSCC), Munich, Germany, February 15–19, 2004.

  10. Narula, H. S., & Harris, J. G. (2006). A time-based VLSI potentiostat for ion current measurements. IEEE Sensors Journal, 6, 239–247.

    Article  Google Scholar 

  11. Ayers, S., Gillis, K. D., Lindau, M., & Minch, B. A. (2007). Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Transaction on Circuits and Systems, 54, 736–744.

    Article  Google Scholar 

  12. Hasan, S. M. R. (2007). Stability analysis and novel compensation of CMOS current-feedback potentiostat circuit for electrochemical sensors. IEEE Sensors Journal, 7, 814–824.

    Article  MathSciNet  Google Scholar 

  13. Nazari, M. H., Mazhab-Jafari, H., Leng, L., Guenther, A., and Genov, R. (2010). 192-Channel CMOS neurochemical microarray. Presented at the custom integrated circuit conference, San Jose, CA, September 19–22, 2010.

  14. Thewes, R., Hofmann, F., Frey, A., Holzapfl, B., Schienle, M., Paulus, C., Stanzel, M., Hintsche, R., Nebling, E., Albers, J., Hassman, J., Schulein, J., Goemann, W., and Gumbrecht, W. (2002). Sensor array for fully electronic DNA detection on CMOS. Presented at the IEEE international solid-state circuit conference (ISSCC), San Francisco, USA, February 3–7, 2002.

  15. Ahmadi, M. M., and Jullien, G. A. (2005). A very low power CMOS potentiostat for bioimplantable applications. Presented at the 9th international database engineering & application symposium (IDEAS’05), July 20–25, 2005.

  16. Ahmadi, M. M., & Jullien, G. A. (2009). A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Transaction on Biomedical Circuits and Systems, 3, 169–179.

    Article  Google Scholar 

  17. Venuto, D. D., Boero, C., Carrara, S., and Micheli, G. D. (2010). A novel multi-working electrode potentiostat for electrochemical detection of metabolites. Presented at the IEEE sensors 2010 conference, Hawaii, USA, November 1–4, 2010.

  18. Carrara, S., Torre, M. D., Cavallini, A., Venuto, D. D., and Micheli, G. D. (2010). Multiplexing pH and temperature in a molecular biosensor. Presented at the IEEE biomedical circuits and systems conference (BioCAS), Paphos, November 3–5, 2010.

  19. Johns, D. A., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ifana Mahbub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roknsharifi, M., Islam, S.K., Zhu, K. et al. A low power, highly stabilized three electrode potentiostat for biomedical implantable systems. Analog Integr Circ Sig Process 83, 217–229 (2015). https://doi.org/10.1007/s10470-015-0524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0524-0

Keywords

Navigation