Skip to main content
Log in

Edge-combining multi-phase DLL frequency multiplier with reduced static phase offset and linearized delay transfer curve

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

An edge-combining delay-locked loop (ECDLL) frequency multiplier with multi phase outputs is presented. In contrast to architectures based on phase-locked loop, the proposed frequency multiplier produces outputs with 25 % duty cycle without operating at multiple times of the required output frequency. Level of reference spurs at the DLL outputs is reduced by a static phase error suppression technique. In this technique, reset pulse of phase detector (PD) is used to steer charge pump (CP) currents to a dummy branch during idle interval of PD and eliminate CP current mismatch effect. This paper also presents a delay cell with linear transfer curve to increase control range of delay line and provide rather constant loop parameters in a rail-to -rail tuning voltage range. Employing the mentioned techniques, an ECDLL with a frequency multiplication factor of N = 14 and 4-phase outputs has been designed in a 0.18 μm CMOS technology. Post-layout simulation results of the designed ECDLL have been provided in this technology. At 1.4 GHz output frequency, static phase offset simulation result shows a reference spur level reduction of about 18 dB compared to conventional PD/CP circuit. From Monte Carlo simulations, which consider effect of delay mismatch among the delay cells, mean spur level is about −40 dBc. Phase noise analysis, based on a discrete-time (Z-domain) model, for the multiphase ECDLL has been provided and its predictions are close to the simulation results. Phase noise at 10, 100 kHz and 1 MHz frequency offsets is −102.7, −112.5 and −120.1 dBc/Hz, respectively. The circuit consumes 20 mW from a 1.8 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Chien, G., & Gray, P. R. (2000). A 900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications. IEEE Journal of Solid-State Circuits, 35(12), 1996–1999.

    Article  Google Scholar 

  2. Hossain, M., Aquil, F., Chau, P. S., et al. (2014). A fast-lock, jitter filtering all-digital DLL based burst-mode memory interface. IEEE Journal of Solid-State Circuits, 49(4), 1048–1062.

    Article  Google Scholar 

  3. Ok, S., Chung, K., Koo, J., Kim, S. W., & Kim, C. (2010). An anti-harmonic programmable DLL-based frequency multiplier for dynamic frequency scaling. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 18(7), 1130–1134.

    Article  Google Scholar 

  4. Cheng, K. H., & Lo, Y.-L. (2007). A fast-lock wide-range delay-locked loop using frequency-range selector for multiphase clock generator. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(7), 561–565.

    Article  Google Scholar 

  5. Chen, Y. G., Tsao, H. W., & Hwang, C. S. (2013). A fast-locking all-digital Deskew buffer with duty-cycle correction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(2), 270–280.

    Article  Google Scholar 

  6. Lip-Kai, S., Sulaiman, M. S., & Yusoff, Z. (2008). A fast-lock delay-locked loop architecture with improved precharged PFD. Analog Integrated Circuits and Signal Processing, 55, 149–154.

    Article  Google Scholar 

  7. Kj, Hsiao, & Lee, T. C. (2009). An 8-GHz to 10-GHz distributed DLL for multiphase clock generation. IEEE Journal of Solid-State Circuits, 44(9), 2478–2487.

    Article  Google Scholar 

  8. Park, H. G., Kim, S., & Lee, K. Y. (2013). A low power DLL based clock and data recovery circuit with wide range anti-harmonic lock. Analog Integrated Circuits and Signal Processing, 74, 355–364.

    Article  Google Scholar 

  9. Lee, H. W., & Kim, C. (2014). Survey and analysis of delay-locked loops used in dram interfaces. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(4), 701–711.

    Article  Google Scholar 

  10. Lin, W., Teng, K., and Liu, S. (2009). A delay-locked loop with digital background calibration. IEEE Asian Solid-State Circuits Conference (A-SSCC), 317–320.

  11. Casha, O., Grech, I., Badets, F., et al. (2009). Analysis of the spur characteristics of edge-combining DLL-based frequency multipliers. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(2), 132–136.

    Article  Google Scholar 

  12. Hwang, S., Kim, K. M., Kim, J., et al. (2013). A self-calibrated DLL-based clock generator for an energy-aware EISC processor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 21(3), 575–579.

    Article  Google Scholar 

  13. Chang, H., Chang, J., Kuo, C. Y., & Liu, S. I. (2006). A 0.7-2-GHz self-calibrated multiphase delay-locked loop. IEEE Journal of Solid-State Circuits, 41(5), 1051–1061.

    Article  Google Scholar 

  14. Liao, F. R., & Lu, S. (2010). A programmable edge-combining DLL with a current-splitting charge pump for spur suppression. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(12), 946–950.

    Article  Google Scholar 

  15. Chuang, C. N., & Liu, S. I. (2008). A 3–8 GHz delay-locked loop with cycle jitter calibration. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(11), 1094–1098.

    Article  Google Scholar 

  16. Chuang, C. N., & Liu, S. I. (2007). A 0.5–5-GHz wide-range multiphase DLL with a calibrated charge pump. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(11), 939–943.

    Article  Google Scholar 

  17. Cf, Liang, Chen, S. H., & Liu, S. I. (2008). A digital calibration technique for charge pumps in phase-locked systems. IEEE Journal of Solid-State Circuits, 43(2), 390–398.

    Article  Google Scholar 

  18. Ojani, A., Mesgarzadeh, B., Alvandpour, A. (2012). A DLL-based injection-locked frequency synthesizer for WiMedia UWB. IEEE International Symposium Circuits and Systems (ISCAS), 2027–2030.

  19. Chang, R. H., Chen, H. M., & Huang, P. J. (2008). A multiphase-output delay-locked loop with a novel start-controlled phase/frequency detector. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(9), 2483–2490.

    Article  MathSciNet  Google Scholar 

  20. Chuang, C. N., & Liu, S. I. (2009). A 20-MHz to 3-GHz wide-range multiphase delay-locked loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(11), 850–854.

    Article  Google Scholar 

  21. Mirzaei, A., Darabi, H., Leete, J. C., & Chang, Y. (2010). Analysis and optimization of direct-conversion receivers with 25 % duty-cycle current-driven passive mixers. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(9), 2353–2366.

    Article  MathSciNet  Google Scholar 

  22. Ghaffari, A., Klumperink, E. A., Soer, M. C., & Nauta, B. (2011). Tunable high-Q N-path band-pass filters: Modeling and verification. IEEE Journal of Solid-State Circuits, 46(5), 998–1010.

    Article  Google Scholar 

  23. Darabi, H., Mirzaei, A., & Mikhemar, M. (2011). Highly integrated and tunable RF front ends for reconfigurable multiband transceivers: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9), 2038–2050.

    Article  MathSciNet  Google Scholar 

  24. Mirzaei, A., Darabi, H., & Murphy, D. (2012). Architectural evolution of integrated M-phase high-Q bandpass filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(1), 52–65.

    Article  MathSciNet  Google Scholar 

  25. Mirzaei, A., Darabi, H., Yazdi, A., et al. (2011). A 65 nm CMOS quad-band SAW-less receiver SoC for GSM/GPRS/EDGE. IEEE Journal of Solid-State Circuits, 46(4), 950–964.

    Article  Google Scholar 

  26. Chang, H., Lin, J. W., Yang, C. Y., & Liu, S. I. (2002). A wide-range delay-locked loop with a fixed latency of one clock cycle. IEEE Journal of Solid-State Circuits, 37(8), 1021–1027.

    Article  Google Scholar 

  27. Chen, C. C., Chang, J. Y., & Liu, S. I. (2007). A DLL-based variable-phase clock buffer. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(12), 1072–1076.

    Article  Google Scholar 

  28. De Muer, B., & Steyaert, M. S. (2002). A CMOS monolithic ΔΣ-controlled fractional-N frequency synthesizer for DCS-1800. IEEE Journal of Solid-State Circuits, 37(7), 835–844.

    Article  Google Scholar 

  29. Saeedi, S., & Atarodi, M. (2010). Single-VCO multi-band DTV frequency synthesizer with a divide-by-3 frequency divider for quadrature signal generation. Analog Integrated Circuits and Signal Processing, 64, 103–113.

    Article  Google Scholar 

  30. Rategh, H. R., Samavati, H., & Lee, T. H. (2000). A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver. IEEE Journal of Solid-State Circuits, 35(5), 780–787.

    Article  Google Scholar 

  31. Ye, S., & Galton, I. (2004). Techniques for phase noise suppression in recirculating DLLs. IEEE Journal of Solid-State Circuits, 39(8), 1222–1230.

    Article  Google Scholar 

  32. Liao, R. R., & Lu, S. S. (2012). A waveform-dependent phase-noise analysis for edge-combining DLL frequency multipliers. IEEE Transactions on Microwave Theory and Techniques, 60(4), 1086–1096.

    Article  Google Scholar 

  33. Hastings, A. (2001). The art of analog layout. Upper Saddle River: Prentice Hall.

    Google Scholar 

  34. Ryu, K. H., Jung, D. H., & Jung, S. O. (2010). A DLL based clock generator for low-power mobile SoCs. IEEE Transactions on Consumer Electronics, 56(3), 1950–1956.

    Article  Google Scholar 

  35. Lee, T. C., & Hsiao, K. J. (2006). The design and analysis of a DLL-based frequency synthesizer for UWB application. IEEE Journal of Solid-State Circuits, 41(6), 1245–1252.

    Article  Google Scholar 

  36. Kuo, C. H., Lai, H. J., & Lin, M. F. (2011). A multi-band fast-locking delay-locked loop with jitter-bounded feature. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(1), 51–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Saeedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, M., Saeedi, S. Edge-combining multi-phase DLL frequency multiplier with reduced static phase offset and linearized delay transfer curve. Analog Integr Circ Sig Process 82, 705–718 (2015). https://doi.org/10.1007/s10470-015-0495-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0495-1

Keywords

Navigation